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From Experiments to Predicting the Component Behavior in Solid Mechanics†

Stefan Hartmann

Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Abstract

Modern computer programs for the calculation of the deformation behavior of components under external loads

require physical models. These so-called material models are either available for specific materials, or they have

to be developed for this purpose. The parameters occurring in the mathematical equations must then be adapted to

special measurements. Then, it is possible to implement these material models in computer programs in order to

predict complex structures or components. This overall process requires knowledge of executing experiments, of

concept formation for developing models, of the numerical implementation of mostly coupled partial differential

equations, as well as of identifying the material parameters occurring in the models. In addition, concepts for

verification and validation of the calculations must be taken into account and further developed. The entire

procedure is relevant in many other scientific fields. Here, we concentrate on problems of the mechanics of solid

bodies.

1 Introduction

One thing natural scientists, life scientists, and engineers have in common is that they have to predict the behav-

ior of buildings, ground (soils), machines, or generally of the behavior of technical, biological, pharmaceutical

systems, and structures. To this regard, mathematical models are used that reflect the behavior of experimental

observations and are used for predictions. This requires a broad range of knowledge and experience in the areas

of conducting experiments, mathematical modelling, numerical calculation and further development of numerical

calculation methods as well as calibrating the models to measurement data. In addition, statements should also be

made about the accuracy, not only regarding the precision of the numerical calculation of the occurring equations

(verification), but the prediction quality (validation) as well. The difficulty associated with this is that each sub-

ject area in itself requires special challenges, knowledge or experience and individual possibilities in the form of

cooperation partners from different disciplines in their environment. In this article, we therefore limit ourselves

to questions of solid mechanics, i.e. the description of the motion or deformation of material (solid) bodies due

to external influences.1 This shows that materials technology, materials science and production engineering are

coupled with mechanics via the experiment. To some extent, there is also a change into microstructural modelling,

due to the possibility of including information from the atomic and molecular scale. On the other hand, applied

mathematicians find a playground in mathematical modelling and numerics (simulation of boundary value prob-

lems as well as the development of non-linear optimization methods in parameter identification). Therefore, solid

mechanics, due to its interdisciplinarity, occupies a special position as a possible cooperation partner, especially

in larger research cooperations. Fig. 1 illustrates the four pillars of solid mechanics, which are completed by com-

plex component simulations with predefined computer programs. All questions should then be embedded in the

research field of verification and validation, see, for the terminology, (Babuska and Oden, 2004). In the follow-

ing, the topics experiment, modelling, numerics, and material parameter identification as well as verification and

validation in mechanics are addressed in more detail.2

†This is a translation of the original article “Vom Experiment zur Vorhersage des Bauteilverhaltens in der Festkörpermechanik” published

in “Jahrbuch 2018” of the Braunschweigische Wissenschaftliche Gesellschaft, Cramer Verlag, Braunschweig, 73 – 94, 2019.
1The transition from solid to liquid state is seamless. The distinction in mathematical modelling is discussed in (Truesdell and Noll, 1965,

Sect. 32-33) and (Haupt, 2002, Sect. 7.3.2).
2Only an extract of existing literature is given. The contribution therefore represents a small personal point of view.
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Figure 1: Tasks in solid mechanics

2 Experiments

Experimental solid mechanics, after originally flourishing in the post-war period, was increasingly scaled back

by the increase of computational mechanics at German universities since the 1980s. It has mainly dealt with

the investigation of material behavior under tensile, compressive, shear, bending, internal pressure, biaxial, and

torsion loads. This was initially driven primarily by the incipient power plant construction with the associated

safety-related aspects and later by forming technology, which was mainly concerned with the challenges of the

automotive industry. This meant that metallic materials were of particular interest. In recent years, however, this

has changed in the direction of many other materials (polymers, ceramics, concretes, wood, . . . ). In addition, due

to increasing progress in the field of electronics, the experimental sample contacting measuring systems have been

further developed and ever higher accuracies have been achieved. Due to the higher maintenance costs of labo-

ratories in Germany with their experimental equipment and the associated personnel expenditure - in comparison

to purely theoretical work or the development of computer programs - this branch of mechanics has been reduced

more and more and has been taken over by application-oriented material technology disciplines. Since the 1960s,

the German research society in mechanics has developed in the direction of computational mechanics – largely due

to the increasing importance of a certain computational method, namely the finite element method, which is now to

be seen as the tool of choice to simulate the behavior of complex component geometries in the industry. For a few

years now, however, laboratories of several universities have been rebuilt. On the one hand, as it has been shown,

the experimental implementation with different process controls for the mathematical modelling of the occurring

physical problems can only be carried out in own laboratories. On the other hand, it has become clear that the

development of many material models – in the following also called constitutive models – and the calculation of

complex components and structures, without own experimental findings or their experimental underpinning, only

allow for a very limited gain of knowledge (and partly also appear questionable). In addition, optical, i.e. non-

contact measuring methods are available today, allowing to monitor the temperature and deformation behavior on

a part of the sample surfaces during the tests. In addition, due to considerably improved microscopic possibilities

(µ-CT images, FIB, SEM, . . . ), the physical causes of the deformation can also be better interpreted. This opens

up completely new possibilities to analyze test results of component behavior, which has made mechanics a very

heterogeneous field of research in recent years. On the one hand, this is due to the modelling of multiphysical

causes (chemical, electrical, magnetic and thermal effects on the deformation behavior) and, on the other hand,

the integration of micromechanical processes for the interpretation of the macroscopic component behavior. This

results in multiple scales in space and time, which pose great challenges for both the experimental treatment and

the model development. In addition to the pure development of measurement technology, there are three major

objectives in experimental mechanics:

1. Initially, the focus will be on conducting experiments to present physical observations.
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2. After the development of constitutive models to describe these effects, the material parameters occurring in

the models shall be adapted, which is referred to as material parameter identification or calibration.

3. To validate the models, independent experiments with other process controls or other (more complex) sample

geometries must then be carried out.

In solid mechanics, these purposes are connected to an interest in temporal loading processes, i.e. how the defor-

mations within a material body occur under an external loading process, or vice versa, what the stress response

looks like due to a given deformation process. This is usually not the case in materials or production engineering,

where key measures are used to characterize material properties.

2.1 Mechanical testing equipment

In mechanics, as explained above, experiments mostly focus on a displacement- or angle-controlled or a force-

or moment-controlled temporal processes. If there is optical access to the specimen or if so-called strain gauges

or strain transducers are applied to the specimen, “local quantities” can also be used to measure or control the

specimen holder movement of a testing machine. A distinction must therefore be made between test equipment

and measurement options. The examination of materials is carried out using uniaxial tensile and compression

testing machines, biaxial or triaxial testing devices,3 shear, torsion, bending and indentation tests or many other

more complex examination options. Fig. 2 shows various classical test facilities, while Fig. 3 shows associated

(a) Tension, compression, tor-

sion testing device

(b) Biaxial testing machine (c) Shear tool

Figure 2: Examples of experimental testing

tensile, biaxial and torsional specimens.

2.2 Measurement Technique of Deformation

The aforementioned experiments must be completed with the measurement of physical quantities, in which strains

on the surface are of interest. They represent a quantity averaged over a certain range which can be measured

by means of strain gauges (adhesive bonding of small electrical components which show a change in electrical

resistance in the event of deformation, see Fig. 4(a)), strain transducers (measurement of the change in distance

between two contact points on the specimen surface, Fig. 4(b)), or also the total change in length, measured with

the movement of the specimen holder in the testing machine. Nowadays, optical methods can also be used if

optical access to the sample is available.

Either a few or very many markers (dot patterns) are applied to the sample in order to determine the surface

strains from the movement of the dots using image correlation methods, see (Sutton et al., 2009). This is not only

a scalar information, but a spatial distribution of the strains and displacements in the sample surface, see Fig. 4(c).

For further optical methods see also (Hild and Roux, 2013). If there is no optical access, as for example in forming

processes, one can only look at the distance changes of the points (usually by etching the markers on the surface

3In addition to the possibility of a pipe under internal pressure and superimposed tensile and torsional loading, there are also complete

triaxial loading devices, see (Calloch and Marquis, 1999).
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F, u

F, u

(a) Flat samples for tension

F1, u1

F2, u2

slots

region of

strain analysis

(b) Biaxial sample with slots for lateral strain minimiza-

tion and point pattern for optical strain analysis

F, u

F, u

MT , ϕ

MT , ϕ

(c) Cylindrical torsion and ten-

sion sample

Figure 3: Sample shapes (either prescription of force F (t) and measurement of elongation u(t) or control of u(t)
and measurement of F (t); in analogy, for F1(t)/F2(t) and u1(t)/u2(t) as well as torque MT (t) and torsional

angle ϕ(t))

(a) Strain gauges for local strain measure-

ment

(b) Strain transducers for an integral mea-

surement of the strains

(c) Digital image correlation for strain

measurement on the surface, see

Fig. 2(b) of the camera system

Figure 4: Examples of testing capabilities

of the sample) before and after the experiment – meaning that no strain information is obtained in situ. Thus, in

most cases, only the integral values of the testing machine, such as force and displacement as a function of time t,
are known.

2.3 Process Control

In experiments, there is an infinite number of process control options (cyclic processes, creep and relaxation paths,

rate dependence, fracture tests, . . . ). In (Haupt, 1993) and (Haupt, 2002) a classification of experimental obser-

vations in isothermal experiments into four categories has therefore been proposed, in order to classify, on the

one hand, a clear linguistic separation of observation (rate independence, equilibrium curve or hysteresis), and,

on the other hand, the constitutive models based on these observations (elasticity, plasticity, viscoelasticity, visco-

plasticity). There are basic experiments to determine in which category the material (and later the constitutive

model) belongs. First, the rate dependence of the material is investigated at different strain rates. It must be

remarked that it is not sufficient to choose a process control that is twice as fast, since most materials react insen-

sitively to this. Rather, four experiments with different strain rates are considered for each change in the power

of ten. In addition, unloading and reloading are carried out as well. Here, it can be seen whether the material ex-

hibits rate-dependent or rate-independent material behavior with or without equilibrium hysteresis. For the latter

a theoretically infinitely slow process would have to take place. This is not practicable and it can be replaced by a

multi-stage relaxation experiment, see (Haupt and Sedlan, 2001; Hartmann, 2006; Sguazzo and Hartmann, 2018;
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Martinez Page and Hartmann, 2018) for details regarding a practical application. The load is gradually increased

and the strain is kept constant over a holding time. This holding time depends on the respective material. Usually

the stresses decrease and the stress rates tend towards zero. Unfortunately, this can take a very long time, so that

frequently estimates (extrapolations) of the behavior are assumed here. In addition to these experiments, cyclic

processes (up to fatigue) or processes up to fracture of the material – depending on the interest or objective – can

also be characterized more precisely. A major drawback of mostly uniaxial process control systems is that the con-

stitutive models based on such systems can only poorly reflect the multi-axial loading processes. Therefore, there is

the tendency to consider triaxiality of material properties, both experimentally and by modelling. For this purpose,

combined tensile-pressure-torsion tests are available, see for example (Haupt and Lion, 1995; Haupt and Sedlan,

2001), or tubes under axial, torsional, and internal pressure load. In the case of soils, triaxial cells are used which

rather represent a two-dimensional load of axisymmetrical samples under external pressure and axial load (Wood,

1990).

3 Constitutive Modeling

The description of material bodies is subjected to natural laws. These have been developed in the form of bal-

ance equations of thermomechanics. In connection with the formal separation of a body from its environment,

a balancing must take place – including the mass, momentum, rotational momentum, energy and entropy bal-

ances. If electrical and magnetic influences are taken into account, further balance equations are available, see

(Eringen and Maugin, 1990). In addition to these balance equations, constitutive models exist which relate defor-

mation and temperature to forces (stresses) and heat flow. Within the field of thermomechanics of solid bodies,

two partial differential equations result, allowing to determine the displacements (local balance of linear momen-

tum, here only for the case of quasistatic processes, so that wave propagation phenomena do not occur) and the

temperature (local heat equation),

divT+ ρ~k = ~0

cΘ(~u,Θ,q)Θ̇ = −κΘ(~u,Θ,q) gradΘ + r(~u, ~̇u,Θ,q).
(1)

cΘ and κΘ describe the heat capacity and heat conductivity, r a heat source (sink), and ~k the acceleration due to

gravity. Mass and angular momentum balance each provide two trivially satisfiable relationships (the density ρ in

the current configuration of the material body is coupled via the deformation gradient with the density in the initial

configuration ρR, ρR = ρdetF, and the symmetry of the stress tensor, T = T
T). The entropy balance, on the other

hand, motivates an inequality, namely that entropy production cannot become negative. This is usually formulated

with the help of the Clausius-Duhem inequality, which in turn has a direct influence on the constitutive models still

to be formulated. For many decades it has been the task of solid mechanics to develop constitutive models. These

were initially developed by engineers and contradicted some basic physical assumptions. Those basic assumptions

were finally formulated and ordered in (Truesdell and Noll, 1965), representing various axioms such as causality,

determinism, equipresence, observer invariance, objectivity, and material objectivity, see also (Eringen, 1980;

Krawietz, 1986) and (Haupt, 2002). Furthermore, symmetry properties for the model development of anisotropic

materials have to be considered. Constitutive models describe the stress state T (Cauchy stress tensor) at the

material point ~X in the reference configuration at time t as a function of the past deformation and temperature

history

T( ~X, t) = F
τ≤t

[

F( ~X, τ),Θ( ~X, τ), ~X
]

, (2)

where F is a functional (which can be formulated by ordinary differential or integral equations), F = Grad ~χR( ~X, t)

defines the deformation gradient and Θ reflects the absolute temperature. ~x = ~χR( ~X, t) is the motion of the ma-

terial point ~X , which is at position ~x at time t. Since it is difficult to analytically or numerically solve integral

equations, ordinary differential equations have prevailed in order to describe history dependence of the material

behavior. This led to the theory of internal variables, variables that can be motivated physically but not identi-

fied experimentally, see (Coleman and Gurtin, 1967). The evolution equations of the internal variables serve to

describe the non-linear, history-dependent hardening behavior and condition the art of the modeler to develop suit-

able models, which must satisfy in particular the second law of thermodynamics (entropy equation) as well as the

above-mentioned axioms. For this purpose a multitude of constitutive models have been developed, which have
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the following mathematical structure,

T̃ = h̃(C,Θ,q)

Aq̇(t) = r(C,Θ,q)
(3)

or with small strains
T = h(E,Θ,q)

Aq̇(t) = r(E,Θ,q),
(4)

see also (Lemaitre and Chaboche, 1990). C = F
T
F is the right Cauchy-Green Tensor and T̃ = (detF)F−1

TF
−T

the 2nd Piola-Kirchhoff stress tensor. E(~x, t) = (grad ~u(~x, t)+grad ~u(~x, t)//2 defines the linearized Green strain

tensor, and qT = {q1, q2, . . . qnq
} represents the vector of the internal variables (which can be scalar- or tensor-

valued; only the components are assembled here). Since algebraic constraints can also occur, for example in models

of rate-independent plasticity with yield function, A can represent a singular matrix. The stress state depends on

the strain state E, which in turn is determined by the three displacement components ~u. Moreover, the dependence

on the temperature is Θ. On the other hand, there are four partial differential equations for the momentum and

the temperature. The internal variables, however, are commonly not determined by partial but only by ordinary

differential equations.

Before addressing the computation of ~u, Θ, and q, further remarks regarding further modeling concepts have

to be made. In addition to this approach, which is regarded as classical modelling, there are other modelling

approaches. For example, the internal variables can also be formulated as partial differential equations to de-

scribe, for instance, the damage behavior in materials, see e.g. (Nedjar, 2016). These so-called non-local models

are also used to consider size effects of sample materials, the so-called gradient plasticity, see (Bertram, 2017;

Grammenoudis and Tsakmakis, 2005). Also micromechanical (and also in the scales below) models are solved

numerically to include more physical effects in the modelling (molecular dynamics, homogenization methods,

FE2, FFT, . . . ), see also (Geers et al., 2010; Müller et al., 2015). The big challenge here is the numerical imple-

mentation or the numerical effort to reproduce real component simulations.

4 Numerical Simulation

Originally, the numerical simulation of the initial boundary value problem (1) in connection with constitutive mod-

els of type (3) or (4) – caused by the historical code development of the finite element method – was experience

driven. Thus, the partial differential equation (1)1 was converted into the weak formulation required for the finite

element method, into the principle of virtual displacements, and former finite element programs for linear prob-

lems were changed to non-linear problems. This was done first for an incremental formulation of the balance of

linear momentum (1)1 and only later on into the currently most common form of the principle of virtual displace-

ment. Intuitively correct the load was incrementally applied – which corresponds to the time integration – and the

resulting system of non-linear equations was iterated until it converged against a solution under integration of the

constitutive models (4), see (Zienkiewicz, 1984)4. The main difficulty was the integration of constitutive models

of evolutionary-type. With the fundamental article on the treatment of such material models (initially a model of

elastoplasticity), Simo and Taylor (1985) coined the term consistent linearization for this issue. Here they intu-

itively applied the implicit-function theorem correctly when evaluating their equations in order to obtain a method

that converges quadratically at any point in time. Due to numerical investigations of the iterates, however, they

had unfortunately interpreted the overall procedure as a Newton-Raphson procedure. Many researchers continue

to follow this not always correct terminology. A more detailed explanatory memorandum must be added to this

effect. A reference to the aforementioned question of numerical solid mechanics to mathematical methods for the

solution of partial differential equations was made in the dissertation of (Wittekindt, 1991), where the aspect was

addressed by applying the vertical line method. There, the space discretization is carried out first – in this case

the finite element method – followed by applying a time discretization method to the equations arising from the

space discretization, see Fig. 5. This leads after the space discretization of the Eqns. (1) and (4) to a system of

differential-algebraic equations (DAE-system)

g(t,u,q) = 0,

Aq̇(t) = rq(t,u,q),
(5)

4German translation of the third edition of the English edition of 1977.

FACULTY 3 6



Figure 5: Vertical line method for solving thermomechanical problems using evolutionary equation type constitu-

tive models

for isothermal problems or for thermomechanically coupled problems to

g(t,u,Θ,q) = 0,

CΘΘ̇(t) = rΘ(t,u, u̇,Θ,q),

Aq̇(t) = rq(t,u,Θ,q),

(6)

g ∈ R
nu , rΘ ∈ R

nΘ , rq ∈ R
nQ , plus appropriate initial conditions. Here u ∈ R

nu and Θ∈ R
nΘ represent the un-

known nodal displacements and temperatures, and q ∈ R
nQ represents the vector of all internal variables to be

evaluated at all spatial integration points (usually Gauss points). CΘ = CΘ(t,u,Θ,q)∈ R
nΘ×nΘ reflects the heat

capacity matrix. Fritzen (1997) then continued this procedure at the same department of the TU Darmstadt, apply-

ing numerical methods of higher convergence order in the time domain to the DAE-system (5). Peter Ellsiepen,

who was influenced by this approach at the same alma mater of the two predecessors (and who moved to the

University of Stuttgart for his doctorate), transferred this to the theory of porous media, (Ellsiepen, 1999). The

class of stiffly accurate, diagonal-implicit Runge-Kutta methods (SDIRK) was used for the time integration of the

DAE-systems, whereby the simplest of the procedures represents the backward Euler method. This method (shown

in the following) leads to a coupled system of non-linear equations

G(tn+1,un+1,Θn+1,qn+1) = 0

L(tn+1,un+1,Θn+1,qn+1) = 0,
(7)

at any point in time tn+1. G ∈ R
nu+nΘ , L∈ R

nq . Parallel to these findings and investigations, the author pursued

the question of which solution method should be used to calculate the non-linear system of equations (7), which

corresponds to the nested iterative calculation common in the finite element method (global Newton-Raphson

method for calculating the nodal displacements un+1 (and nodal temperatures Θn+1) and the inner loop for calcu-

lating the internal variable qn+1 at the spatial integration points (Gauss points)) with the method characterized by

Simo and Taylor (1985). In (Hartmann, 1998) it has been shown that this corresponds to the so-called Multilevel-

Newton Algorithm (MLNA), which was already known in connection with the numerical solution of electrical

networks, (Rabbat et al., 1979), as well as non-linear optimization problems, (Hoyer and Schmidt, 1984).5 This

was treated in the fundamental contribution of Ellsiepen and Hartmann (2001), see also (Hartmann, 2005). Thus, it

is now clear that the numerical procedure presented in (Simo and Taylor, 1985) does not correspond to the Newton-

Raphson procedure. On a closer look it should also be noted that the entire algorithm of applying the backward

Euler method and the MLNA to the solution of a DAE-system was already known in (Rabbat et al., 1979), i.e. to

another scientific community, see also (Hartmann, 1998). A number of further investigations and applications were

carried out based on these findings, such as the reaction force calculation with displacement control, the integra-

tion of constraints such as plastic incompressibility by projection methods, the application of different non-linear

equation solvers, the transfer to questions of dynamics, the transfer to large deformations, as well as the extension

5At this point the author would like to thank Professor Hubert Schwetlick (TU Dresden), who gave the reference to the publications when

asked.
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to multi-field problems such as thermal fluid-structure interaction and electro-thermomechanics in sintering pro-

cesses. The numerical time integration of the SDIRK-method has – apart from higher accuracies – the advantage

that a step-size control based on the estimation of the time steps is provided, with close to no additional effort, so

that nowadays especially processes like creep or relaxation are possible in reasonable calculation times. Further-

more, time adaptivity also solves the question of a suitable step-size ∆tn = tn+1 − tn for coupled field problems

by error estimators. There was also the question of whether other time integration methods were more attractive in

order to reduce the effort of the calculations. Attempts to treat the DAE-system (6) using BDF methods were done

for example by Eckert et al. (2004), or applying Rosenbrock or semi-explicit Runge-Kutta methods in (Rothe et al.,

2012). Further, the question has been addressed whether not only the time discretization error can be reduced by

higher order methods in combination with time adaptivity, but also whether the spatial error can be combined with

finite elements of higher order in order to minimize the discretization error for the solution of the partial differ-

ential equations (1) in combination with the constitutive models of the evolution equation type. The p-version

of the finite element method, see (Szabo and Babuska, 1991; Düster, 2002), has been combined with SDIRK and

Rosenbrock methods, (Netz et al., 2013; Netz and Hartmann, 2015). Recent investigations are so-called contact

problems in which two deformable bodies come into contact, which were coupled with SDIRK methods and step-

size control as well as a mortar contact formulation, (Grafenhorst, 2018). However, there are also disadvantages

to this approach. For example, the temporal order of convergence in non-linear Dirichlet boundary conditions

of parabolic and hyperbolic problems is not achieved and is only considered by a trick, (Alonso-Mallo, 2002;

Alonso-Mallo and Cano, 2004; Rothe et al., 2015). Currently, there are also open questions regarding problems

with different time scales, as they can occur in multi-scale and multiphysical problems.

5 Material Parameter Identification

The constitutive models occurring in the Eqns. (3) and (4), and also in the heat conduction equation, have so far

still undetermined material parameters κ∈ R
nκ , which are based on suitable experimental data d ∈ R

nd , and have

to be adjusted. A conceptual approach is the least-square method, where the square of the distance r̃(κ) from the

model s(κ) and the experimental data d should be minimal

f(κ) =
1

2
r̃ T (κ)r̃(κ) =

1

2
{s(κ)− d}T {s(κ)− d} → min. (8)

This question has been intensively examined especially in the 1970s for general questions, see (Beveridge and Schechter,

1970; Beck and Arnold, 1977) or (Draper and Smith, 1998). Thereby either linear or non-linear systems of equa-

tions to be solved arise – iteratively solved with so-called numerical optimization methods with and without con-

straints, see for example (Spellucci, 1993; Dennis and Schnabel, 1996; Nocedal and Wright, 1999). Regarding the

application of such methods in the context of solid mechanics we first refer to (Thielecke, 1997). However, it can

be said that only relatively few German scientists work in this field, since the range of experiments, modelling and

numerics is required, and an experience-based procedure to determine the parameters must be carried out as well.

Unfortunately, there is currently no procedure that can be applied to any model. The identification of material pa-

rameters represents a so-called inverse problem, since a limited amount of measurement information must be used

to deduce the corresponding parameters of the model prediction. This only leads to unique solutions in special

cases. Therefore, there are a number of questions that are of interest:

1. Which numerical method is suitable to efficiently solve the problem (8) even with inequality constraints?

2. What (numerical) procedures exist to determine the material parameters of problems (3) or (4)?

3. How and with which experiment can the material parameters (possibly individually) be addressed? What

are the experimental data that can be delivered by an experiment?

4. What is the quality (sensitivity to measurement errors, uniqueness, . . . ) of the parameters found?

5. Are there any experiments and loading processes at all that address the material parameters?

6. Do special sequences of identification procedures exist, i.e. using special measurements to determine the

entire set of parameters with subsets of parameters from κ?
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Usually, Gauss-Newton-like methods are used to treat the minimum problem (8), which can only detect local

minima. Other methods, such as the evolution strategy, see (Rechenberg, 1973), require a very high number of

evaluations and are inefficient for expensive calculations of s(κ). Nowadays, the algorithms are so stably pro-

grammed that they usually yield a set of parameters. Unfortunately, some parameters might be outside physically

meaningful ranges, they vary with changing starting values of the mostly iterative procedures, or the solutions of

the model s(κ) look insufficient. Therefore, there is the question of the quality or measures for characterizing

the quality of the identification process. Due to the usually non-linear least-square problem, one can approach the

problem in the solution κ
∗ by a linear least-square problem and use estimative measures like the confidence inter-

val or the correlation between parameters as well as with the help of the Hesse matrix the concept of identifiability,

(Beveridge and Schechter, 1970; Beck and Arnold, 1977), see also (Hartmann and Gilbert, 2018; Hartmann et al.,

2018). In particular, the concept of identifiability can be used to find out which experiments are suitable for ad-

dressing certain material parameters. It is also very easy to see that it is sometimes impossible to identify all

material parameters at the same time. Here, certain subsets of parameters have to be adapted to special experi-

ments (example: constitutive models of the overstress-type). In other words, knowledge of the behavior of the

model must be available in order to identify parameters, and conversely, knowledge of the identifiability of the

parameters must also be included in the modelling. It is precisely these questions that have led to constitutive

model development that is dependent on the concept of identifiability. Parameter identification, i.e. the calibration

of the model to measurement data, is therefore an experience-based process. Since there is usually no optical mea-

surement data concerning the deformation (or the temperature) on the surface of the specimens, but only resulting

traverse displacements – or local strains (strain gauges, strain transducers, see section 2) – or forces are recorded

from the experiments, tensile tests (or torsion tests of thin-walled pipe cross-sections) are usually the first choice

to evaluate the constitutive equations (3) or (4) component-wise under the assumption of homogeneous deforma-

tions and stresses (the strains and stresses are regarded as constant in a certain area of the sample). A common

fallacy is that instead, one-dimensional constitutive models are used and not the three-dimensional equations for

the special case of the uniaxial tension are evaluated, which usually leads to different relationships and thus to

different material parameters. Therefore, (Krämer et al., 2015) present a method which consistently bypasses this

problem by means of the DAE-interpretation, with the advantage that the stress algorithm required for the finite

element calculation including the generated consistent tangents can be used directly. If there are no homogeneous

deformations in a sample (which is usually the case, except for the very few experiments mentioned above), the

entire initial boundary value problem (1) and (4) must be solved to determine s(κ). This was intensively advanced

by (Andresen et al., 1996; Mahnken and Stein, 1996, 1997) (for further literature see (Hartmann, 2017)). Unfor-

tunately, however, the consistent interpretation of the solution concept of the vertical line method from Section 4,

i.e. the solution of DAE-systems, has not been used here. If looking for mathematical literature that addresses the

identification of parameters in ordinary differential equations, DAE-systems, or also partial differential equations,

the work of Schittkowski (2002) has to be mentioned. Here, instead of the numerical differentiation of the entire

code (external numerical differentiation), the functional matrices required in Gauss-Newton-like procedures are set

up analytically (internal numerical differentiation), which promises an enormous gain in computing time. In addi-

tion, a consistent representation has been found which can be adapted to many other DAE-solvers and problems.

This is examined in (Hartmann, 2017) and transferred to the DAE-system (5) so that a consistent representation

and algorithm exists. For each time tn+1 from the system (7) in the form (here only shown for the isothermal case

and problems without forces as measured data)

G(tn+1,un+1(κ),qn+1(κ),κ) = 0,

L(tn+1,un+1(κ),qn+1(κ),qn(κ),κ) = 0,
(9)

determines the ∂un+1/∂κ matrix required for the Gauss-Newton-like procedure. As an alternative to Gauss-

Newton similar methods for solving least-square problems, there are alternatives such as the virtual-field method,

(Pierron and Grédiac, 2012), probabilistic methods, (Tarantola, 2005; Rosić et al., 2013), or also neural network

schemes, (Huber and Tsakmakis, 1999a,b). However, they cannot improve the quality of the parameters. These

procedures have not been specifically dealt with here.

6 Verification and Validation

Since numerical models are used to predict the real component behavior, there is the question of the quality of such

a prediction. There are a number of uncertainties that need to be taken into account. Initially, the findings are based
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only on a limited number of experiments that already lead to erroneous data. Then, identification tools are used

to determine the material parameters of selected constitutive models, and finally simulations are performed where

uncertain initial and boundary conditions (bearings, loads) and approximate algorithms are used for calculation.

On the one hand, it therefore has to be asked how the results are produced – and what significance they have on

the other? This problem is coupled with the research branch Verification and Validation (V&V). First of all, it is

necessary to differentiate the terms verification and validation, since they are very often used as synonyms. This

aspect has been treated in the fundamental contribution of Babuska and Oden (2004). A very rough illustration in

the form of questions can be given as follows: verification deals with the question “Do we solve the equations cor-

rectly?”, and validation discusses “Do you solve the right equations?”. Verification is understood in such a way that

the first thing that matters is not whether the physics is described correctly, but whether the numerical calculation

method provides “correct” answers. This means that statements about the numerical accuracy of the solution of

the partial differential equation have to be given – on the one hand connected to code verification and on the other

hand with calculation verification. In this sense, verification is a process that ensures the accuracy and reliability

of the calculation. The code verification therefore represents the verification of the implementation of the mathe-

matical model, which sometimes implies a comparison to analytical solutions or a comparison to high-precision

solutions of other methods. Calculation verification, on the other hand, describes the evaluation of the accuracy of

the calculation and is associated with time and space adaptivity of the solution method in order to remain below

user-defined error tolerances. Unfortunately, there is currently no universal adaptive method for the problem (1)

and (4). Validation, on the other hand, involves a comparison of component experiments and numerical predic-

tions, using measures of quality. Validation is also a process that deals with the accuracy of the physical model

in relation to its intended use. The concept of V&V has meanwhile been included as a recommendation in the

standards of the “American Society of Mechanical Engineers” (The American Society of Mechanical Engineers,

2006), and is strongly connected with the consideration of uncertainties, see also (Oberkampf and Trucano, 2002;

Roache, 1998; Schwer, 2001). In particular the model adaptivity is pointed out, i.e. not only the discretization

procedures are adapted to numerical inaccuracies, but also the constitutive models, (Oden, 2018). In this sense,

the objective of the model, which is in demand at the beginning of any modelling, is of particular interest, since

too complex models are sometimes far too demanding and therefore not necessary for the actual, causal objective.

Currently, V&V is quite an important and very open field – and it is, unfortunately, only dealt with selectively in

the field of solid mechanics in Germany.

7 Conclusions

The modelling of material properties for materials of daily use – while in use or during production – is primarily

subject to the question what exactly the model is supposed to be used for. Based on this, a process is developed for

the execution of experiments, the development of mathematical models under consideration of physical restrictions,

a consistent numerical treatment and the calibration to the previously performed experiments or their experimental

data. This process is almost complete in its understanding of the numerics used. However, this does not imply

the effort involved in new physical phenomena for materials that have not yet been modelled, both in carrying out

the experiments and in modelling and parameter identification. All in all, this is a complex and experience-based

process. For multi-field problems, the effort is exposed by the physical couplings and with multi-scale problems,

and the treatment of the overall problem of experiment, modelling, numerics and identification is currently a

completely open field. This is embedded in the continuous process of verifying the programming and validating

the physical modelling – under consideration of uncertainties. Looking at the past 50 years as an evolutionary

process, we can be confident that it will be possible to solve many problems that lie ahead.
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Rosić, B. V., Kuc̆erová, A., Sýkora, J., Pajonk, O., Litvinenko, A., and Matthies, H. G. (2013). Parameter identifi-

cation in a probabilistic setting. Engineering Structures, 50.

FACULTY 3 12



Rothe, S., Hamkar, A.-W., Quint, K. J., and Hartmann, S. (2012). Comparison of diagonal-implicit, linear-implicit

and half-explicit Runge-Kutta methods in non-linear finite element analyses. Archive of Applied Mechanics,

82(8):1057 – 1074.

Rothe, S., Schmidt, J.-H., and Hartmann, S. (2015). Analytical and numerical treatment of electro-thermo-

mechanical coupling. Archive of Applied Mechanics, 85:1245–1264.

Schittkowski, K. (2002). Numerical data fitting in dynamical systems. Kluwer Academic Publ., Dordrecht.

Schwer, L. (2001). Constitutive model verification and validation.

http://www.mech.northwestern.edu/fac/cao/nsfworkshop/briefs/Schwer_p1.pdf.

Accessed: 2005.

Sguazzo, C. and Hartmann, S. (2018). Tensile and shear experiments using polypropylene/polyethylene foils at

different temperatures. Technische Mechanik, 38:166–190.

Simo, J. C. and Taylor, R. L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Computer

Methods in Applied Mechanics and Engineering, 48:101–118.

Spellucci, P. (1993). Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser, Basel.

Sutton, M. A., Orteu, J.-J., and Schreyer, H. W. (2009). Image correlation for shape, motion and deformation

measurements. Springer, New York, 1st edition.

Szabo, B. and Babuska, I. (1991). Finite Element Analysis. Wiley, New York.

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM Society for

Industrial and Applied Mathematics, Philadelphia.

The American Society of Mechanical Engineers (2006). Guide for Verification and Validation in Computational

Solid Mechanics, volume ASME V&V 10-2006. New York.

Thielecke, F. (1997). Parameteridentifizierung von Simulationsmodellen für das viskoplastische Verhalten von

Metallen - Theorie, Numerik, Anwendung. No. 34-1998, Technische Universität Braunschweig.

Truesdell, C. and Noll, W. (1965). The Non-Linear Field Theories of Mechanics, volume III/3 of Encyclopedia of

Physics. Springer Verlag, Berlin.

Wittekindt, J. (1991). Die numerische Lösung von Anfangs-Randwertproblemen zur Beschreibung inelastischen

Werkstoffverhaltens. Doctoral thesis, Department of Mathematics, University of Darmstadt.

Wood, D. M. (1990). Soil behavior and critical state soil mechanics. Cambridge University Press, Cambridge.

Zienkiewicz, O. C. (1984). Methode der finiten Elemente. Carl Hanser, München, 2nd edition.

13 Technical Report

http://www.mech.northwestern.edu/fac/cao/nsfworkshop/briefs/Schwer_p1.pdf

	Experiments_Hartmann.pdf
	Introduction
	Experiments
	Mechanical testing equipment
	Measurement Technique of Deformation
	Process Control

	Constitutive Modeling
	Numerical Simulation
	Material Parameter Identification
	Verification and Validation
	Conclusions


