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Comparison of the multiplicative decompositidis= FgFy andF = FyFg
in finite strain thermo-elasticity

Stefan Hartmann

Institute of Applied Mechanics, Clausthal University of Technology, sleRoemer-Str. 2a, 38678 Clausthal-Zellerfeld,
Germany

Abstract

In this work out the multiplicative decomposition of the deformation gradietot a thermal and a mechanical
part is investigated on the basis of a model of thermo-elasticity. The pedpmultiplicative decomposition is
studied to be in both order, i.e. in the folfh= FoFy andF = FyFe. It is shown that for the case of isotropy
and the assumption of a pure volumetric temperature evolution both faiondayield the same stress state.
However, in the intermediate configurations different results occurthErmore, some basic investigations of
uniaxial tensile/compression tests with constant temperature or proldemiagsical strain-energies are treated.
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1 Introduction

The incorporation of thermal effects into mechanicallyjeated deformation processes can be modeled by the
multiplicative decomposition of the deformation gradié“r(t)?, t) = Grad )ZR(X', t), into a mechanical paify
and a thermal paflf ¢, respectively,

F = FyFo, 1)

wherex = )ZR(X t) defines the motion of particI§’ occupying the place at timet. This proposal goes back to
[Lu and Pister, 1975]. Another decomposition makes useefé¢kierse order

F =FoFu, (2)

see, for example, [Yu et al., 1997] and [Miehe, 1988]. Howefa both decompositions there is no systematic
comparison available to show the resulting strain and stresasures in view of the concept of dual variables, see
[Haupt and Tsakmakis, 1989, Haupt and Tsakmakis, 1996].

The multiplicative decomposition of the deformation geadiinto two parts comes from the field of plasticity,
where the deformation gradient decomposes into an elasiia#lastic partF = F¢F,, see [Lee and Liu, 1967,
Lee, 1969]. For a double product, i.e. the multiplicativeam®position is carried out several times in order to
assign various physical causes to kinematical quantsies,[Lion, 2000a, Tsakmakis and Willuweit, 2004] and
its numerical treatment in [Hartmann et al., 2008] and tterditure cited therein. The decomposition is also ex-
tended to constitutive models of viscoelasticity, see [lndy, 1985, Lion, 1997], see [Hartmann, 2002] for further
literature. A further possibility makes use of the deforimatgradient’s decomposition into volume-preserving
and volume-changing parts going backto [Flory, 1961]. Ilfrais-energy function is built up of two terms, one
containing the volume-changing and the other the volunesgaving part, the stress state results in a pure hydro-
static stress-state caused only by the volume change andaati part only influenced by the strain-energy of
the volume-preserving deformation, see, for example, fidjd994, Hartmann and Neff, 2003] and the literature
cited therein.

In this short study a model of finite strain thermo-elasyicit developed making use of the property that most
elastomers show nearly incompressible behavior so thdiabkie elasticity relation should take this into account.
Following the ideas in [Hartmann and Neff, 2003], the Floyge decomposition into an isochoric and a volumetric
part for thermo-hyperelasticity is applied as well, whi@she advantage of a systematic assignment of volumetric
effects to the spherical part of the Cauchy-stress tensbtl@volume-preserving deformation to the deviatoric
stress state.

The investigations are structured as follows. First of e decomposition§ = FgFy andF = FyFg
are studied in view of the quantities in the concerning imediate configurations. Afterwards, some brief in-
vestigations on uniaxial tensile tests are addressed foodehapplicable in rubber elasticity. The underlying
investigations are, in subsequent investigations on &mojgic and inelastic constitutive models, a basic investig
tion.

2 Strain and stress measures of decomposition F = FgFy,
According to the sketch in FigJ 1 the multiplicative decorsition (2) is applied,
F = FoFy = FoFuFu, &)

where the mechanical part
Fvm =FuFum 4)

is decomposed into a volume-preserving f@jtand a volume-changing pdfiy,

Fy = (det Fiy) /%1, (5)
FM = (det FM)il/BFM. (6)

Frequently, the thermal part is assumed to be purely voltienét

Fo=¢"%I,  ©=¢(0-6y), @)

FACULTY 3 2
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Figure 1: Sketch of multiplicative decompositibh= FgFy
where¢(0) = 1 should hold. © is the absolute temperature afg defines the reference temperature. The
determinant of the thermal deformation is
det Fo = ¢(© — 0g) (8)
describing the volumetric deformation caused by the teaipez chang® — O, which is chosen to be linear

G0 —0p) =1+ a(0 —6y). 9)

Of course, other proposals are possible. In [Lion, 20000][&teimes, 2005] an exponential ansatz in applied as
well, (0 — 0p) := e*(®=90) where Eq[(9) represents the first order approximation.

detFy =detFy,  detFy =1 (10)
defines the volumetric Al mechanical deformation. In vievited total deformation
detF = det(FoFn) = (det Fo)(det Fy) = $(© — Og)(det Fy) (11)

holds. Accordingly, we have

L = 1/3
F—FF with {F (p det Fy) /"1 (12)
F =Fu.
If the densities are considered,
pr = (det F)p = (det Fu)pm (13)
defines the density in the reference configuratipsymbolizes the density in the current configuration, and
pm = (det Fo)p = ¢p (14)
denotes the density in the mechanical intermediate corafiigur.
Sometimes it is useful to introduce the abbreviation fordbrminants
J:=detF = JoJum, (15)
J@ ;= det F@ =, (16)
JIuv :=det Fy = J/ o, (17)

which are used later for short notational purposes.

Using the imagination of a fictitious thermal unloading, #émto the case of the multiplicative decomposition
of the deformation gradient into an elastic and a plastitestgee [Haupt, 1985], defines the mechanical Green
strain tensor

. 1, 7
By = _lim E= (FiFy-T) (18)
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where 1
E= 5(FTF ) (19)

is the Green strain tensor itself. This motivates the thépad of Greenian-type
1 1
Eo =E - Ey = 5(FT1~“—F§1~“M): 5(C—CM), (20)

or vice versa the additive decomposition
E=Eu + Eo. (21)

The push-forward operatiolﬂ,\]TEF,\jl1 yields the decomposition

f‘ = fM —+ f‘@ (22)
with
1 1 (102/3
I = Fy"EF}’ §(F@Fe -Fy'Fy") = §(<p2/31 ~By') = — - B (23)
1 1

I'w =Fy EyF,,! =@ Fy'Fy?l) = S@- By'), (24)

1 1 1
I'o = F,,"EoF,,' §(FgF@ ~1)=5(Co~T) = 5(<p2/3 - I, (25)

wherel, I'y andl’¢ measure the strains relative to the mechanical intermedaatfiguration. Here, the right and
left Cauchy-Green tensors

C=FTF, Co = FiFo, Cw = F},Fu, (26)
B=FF", Be=Fo¢F,, By=FyF} (27)

are introduced. The definition of the strain measures (2d)(26) have the advantage that they are purely me-
chanical and purely thermal, respectively.

Additionally, strain-rate tensors on the mechanical mtediate configuration can be defined on the basis of the
material time derivative of (18), (19) and (20) by the copasding push-forward operatidfy,” (...)F,,". This
yields the strain-rate measures relativéSto

AN .
I'=F,"EF,' =T + L} + Ly, (28)
A
~ . 2 - ~ 1
v = Fy EyFy' =Ty + LTy + TyLy = 5 (T + L{) =: D, (29)
N
F() = FM E()FM = FQ + LMFO + FoLM (30)
Obviously, the additive decomposition
2 L 4
I'=Tw+Te (31)

A
is inherently defined. The strain-ralg, is purely mechanical, whereas the thermal strain-ratdiveléo the
intermediate state can be calculated by

AN

A
To=-¢'(0—00)01t)e Y3 T+(p*/3 —1)I'm, (32)

W =

T'e

see Eqns.(30), (25), ard (29).

Next, these strain measures are used within the specifgsgtmver to develop appropriate stress measures,
1 S 1, 4

AN
~ . 1 -~ ~ 1 ~ ~ N ~
p:p—RT.E:p—RT-(FﬂrFM):p—R(FMTFﬂ) =S T (33)

FACULTY 3 4



exploiting Eq.(28) and introducing a Kirchhoff-type stseensor relative to the mechanical intermediate configu-
ration . _
Sw = FuwTF},. (34)
T = (det F)F~'TF~T defines the second Piola-Kirchhoff stress tensorBritle Cauchy-stresses.
Inserting the strain-rate's (31) and (32) into the specifesstpower (33) leads to
1. 2 1. % 2 1 .2
p=—8m -I'=—8y-(Tm+Te)=—¢**Sy -Tu+
PR PR PR

In view of thermo-mechanical processes the Clausius-Duineuality has to be fulfilled requiring the stress
power

¢'(6 — O9)p~1/30(t)
3pr

(tr Sm). (35)

. 1 - . 7 L 1 L& 2
) —Os+ —T - BE- L grad0=—9)—Os+ —Sy-I'— L .grad® >0, (36)
PR PO PR 0O

wherey defines the specific free energythe entropy, and the heat flux vector. In the following, the proposal of
[Lion, 2000b] and [Heimes, 2005] is taken up where the freergy depends on the mechanical deformaiipn
and the temperatur@,

Y(Em, ©) = ¥m(Cw, ©) + 9o (0). (37)

Of course, the first natural assumption wouldlf€y, ©) = ¢¥m(Cwm) + e (O), i.e. there are clear assignments
of mechanical and thermal induced stresses. However, benddasticity it turns out experimentally that the stress
state depends linearly on the temperature. Thiwg,Cwu, ©) is assumed to be a function of the temperature as
well. The dependence of the mechanical part is assumed todse in the temperature

U (C.0) = & T(Cu) (38)
with B B
Ym(Cwm) = U(Jm) +0(Cnm) = U(JIw) + w(lg,. s, ) (39)

o(Cy) = w(lg, g, ). Here, the mechanical deformation is decomposed into velahanging and preserving
parts, defined by
Ju = det Fyy = (det Cy)/? (40)

of Eq.(17) using the unimodular, mechanical right Cauchgea tensor
Cy = (det Cy)~Y3Cy,  detCy = 1. (41)
The thermal part of the strain-energy (37) is defined by
Cp (C) 1 9 9
Ye(@) == [((©®—06¢) —O0In— | (1 -ky,0¢) — -k,(0* - 05) |, (42)
PR (CH 2
see [Heimes, 2005].
The evaluation of the material time-derivative of the fraergy+), see Eq.(37),

© dyy(Cu)
Oy dCy

(En, 0) = (gowmcw) o1 G + ¥(0)0, (43)

is required in the Clausius-Duhem inequality (36) yieldibg means of definition (34) and the time derivative of
A

(18) expressed by the mechanical right Cauchy-Green t¢26p; Cy = 2F, Ty Fu,

1 2/3& S dEM(CM) T) r
— Sy —2—Fy———=Fy, | - T
(PR@ MT e, M dCw M M

+ (=5 (GO + 6(0) ) + 70 (0 - )8 ) 6

—

~ 4 orad0 >0 (44)
pO
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Exploiting arbitrary mechanical strain and temperatuthpaommonly implies the three following expressions:
2R © o d¢y(Cwm)

Sy = ——~ Fl, 4
Swm 250, A, ™ (45)
1 — 1 R o
s = ——0u(Cw) — ¥6(0) + =—¢ /3¢ (6 — ©9)(tr Su), (46)
@0 BPR
qd= —rgrad ©, k>0 47

In the following, the stress tensor and the entropy are agaekby quantities relative to the current configura-
tion. The particular strain-energy function (39) yields foe derivatives in the elasticity relation (45) the terms

dU((detCw)*?) 1, .
ICoy = gJMU (Jm)Cy (48)
and B .
dv(Cu(Cwu)) {dCM} dv 49)
dCwm | dCy dCwm
with -
dCwm | _ (det Cyw)~Y/3 |Z — 1(C;A1 ®Cw)| = Jy2* |7 - 1@]1 @ Cw)| . (50)
dCw 3 3
7 defines the identity tensor of fourth order,
IT=[IQ1"™ =646,6 0¢ Q& Qé, (51)

here defined in Cartesian coordinaté®y = A. Obviously,C,,' ® Cy = é,\]l ® Cy holds. Caused by the
particular dependence on the invariants of the mechanigaiadular right Cauchy-Green tensors, the application
of the chain-rule leads to

do ow dlg, ow dlig,

Cu G T M = (w1 4 walg, )T — w2 C 52
dCy Jlg, dCy  dllg, dCy (w1 + walg, )T — waCy (52)

with 5 )
w w
l= llg )= —— l= s )= .
(g, llg,) g, and - waiy e, g 53)
In other words, we have
dm(Cwm) / 1 —2/3 1o-1 = do
= C 2 77— -C C = 54
dCy MU G+ 2 30m @] G, (54)

——1 _ — 1 ——1
= l\lﬂ/SU/(JM)CM + 2JM 2/3 <(w1 + UJ2|6M)1 —waCy — g(wlléM + 2w2”6M)CM > . (55)
In the following, these expressions are used to expresdabtaity relation relative to the current and the refeeenc
configuration. First, the push-forward operation of theosecPiola-Kirchhoff tensor yields
S = FTF” = F(Fy,'SuFy,,)FT =
= FoFu(Fy'SuFy" ) Fy FS =
= F@gMFg = (,OZ/SSM (56)

where use is made of the decomposition (2) and Eq.(84) (det F)T defines the weighted Cauchy tensor, i.e.
the Kirchhoff stresses. Comparing (56) with (45) yields

© . diy(Cwm) ¢

S = 2pp—Fy — MW RT 57
PRG, M dCy (57)

C) C) —2/3 T 1 1 do

= pp—JIMU (JW)I + 2p0p —J. F Ful |7 - =C C — =
PR, M (Jm)I + PR, M [Fy ® Fu] { 5Cn ©Cu ic.

C) C) 1 _ — Ty dU
= pr— U’ (Ju)I + 2 [I—I@I] Fy @ Fu| > — =
pR@o M (M> pR@o 3 [ M M] dCM
) 0 ([~ dv —1\”
pR@0 M ( M) PR@0 MdCM M (58)

FACULTY 3 6



Exploiting the property
[Fv @ Fu]™ | - éc;ﬂl ® CM] - {z - %I ®1] [Fu @ Fy] ™, (59)

where .
D=71-— §I R1I (60)

defines the deviator operatbrA = AP = A — %(tr A)I, yields under the assumption of isotropy the Kirchhoff
stress tensor

SZPR@gOJMU/(JM)I‘FQPR@gO (BMd(;}M)D- (61)
Finally, the Cauchy stress tensor reads
T= RO gy 2R Y ( do BM>D. (62)
¢ O J ©y \dBy

If one considers the mechanical unimodular left Cauchye@tensor

By = Jy By = (J/¢) 2*¢™*B = J7*B =B, (63)
Eq.(62) can be expressed by
_ D
PR O 2pr © (dv>
T=R 01+ 2= (=B , 64
> o0 (J/#) J 6, \dB (64)

i.e. only the volumetric part of the strain-energy functiéi/y) = U(J/¢) depends on the temperature by the
factor p=1(© — ©0)U’(J/$(© — ©y)), and the overall stress state is assumed to increase jingdnl © /6.
Sincep =~ 1 holds, the curves are only scarcely influenced.

Furthermore, the entropy (46) reads

1 — 1 :
5= g Pu(Cw) - 16(0) + %w/%%@ — ©p)(trS) =

-5 (v(2)+0@) - w1+ & £ (2) (65)

using relation[(5B).

3 Strain and stress measures of decomposition F = Fy Fg

In this section the decompositidn (1) is considered, segZ-iflowever, we extend again the investigations to the
split into a volume-preserving and a volume-changing part

F = FyFo = FyFyFo, (66)

defined in Eqns.(4), (5) and (6). The Green strain tensor aniasthe thermal deformation is defined by a fictive
mechanical unloading

- 1
Eg:= lim E= -(FlFg -1 67
0= im B=7FeFo 1) ®7)
leading to
- 1
Eeg = 5(902/3 -1, (68)

where the thermal part of the deformation gradient (7) isiitesl. Accordingly, the mechanical part reads

| 1
Ey=E-Eg = 5(FTF —FLFo) = 5(C- ©2/31). (69)
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Figure 2: Sketch of multiplicative decomposition (1)

In order to obtain the strain measures on the thermal intdiate configuration, the push-forward operatfor=

Fg EFg' is introduced yielding

1 e 1 _ 1 _
§(F§FM - F@TFel) = §(CM - Bel) = §(CM - 2/31)

- CTE e 1 1
M = FeTE'\/lF@>1 = §(F§FM -I)= §(CM -1

'?:

N CTE e 1 i 1 _
Yo =Fg EoFg' = 5(1 ~F5'Fg') = 5(1 — 71

i.e.
Y=9m+ %o
Using
Fo = %@P_Q/?’I
and

the strain-rate tensors relative to the reference confiiguraead

1. * X
= §C = Eo + Em
: 1 2. 1., 1
E C— 2o V3 = ZC — —gp /71
m=5(C-5¢ )=5C—3o¢

2 1 .1 . 1. _
Eo = 5(F@F@ + FLFe) = 39 1/31

and the push-forward operation to the thermal intermediatdiguration yields

A N 2 N

4 =Fg EFg' =4+ LEA +4Le = g “07

A _T£ 1 2 T4 ~ 2 2@ : 1% Lo
v =Fo EvFg =4y + Lodm +'YML@:'YM 30 CM"'g*CM —E;I

A ; o
Yo =Fo EoFg'=4g + L&Ye + JoLo = Do = Lo = %I

with the Oldroyd strain-rate

FACULTY 3
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In the following, the specific stress power has to be evatliataeding to
1

1 1 = A 1, 4
p= T B= T (FLAFe) = — (FoTFL) - § = 8o -4, (83)
PR PR PR PR

with the stress tens@g relative to the thermal intermediate configuration
S@ = F@TF% = (pz/BT. (84)
If one inserts the additive decomposition (82) into](83) ardloits Eqns.(80) and (81), the following expression

for the stress power results,

I 1
p=—So - (Au+9e) = —Se- CM + g;CM (85)

Inserting this expression with the material time derivatof the specific strain-energy function {43) into the
Clausius-Duhem inequality (36) yields

¢'(© —Oo)

So-Cu) | ©
3pRY (Se M))

(s ~ o u(Cu) ~ (0) +

1 5 ©dpy(Cu)) . 7
- ¥ ). >
+(2pRs@ 5, dCe Cum — @ .grad©® > 0. (86)

For independent thermal and mechanical processes a sufiiciedition to satisfy the Clausius-Duhem inequality
is

© dyu(Cw)

=2 7
Se PR@0 dCy, (87)
_ (0 — 0g) A
5= -0 () — v (@) + 2O =0 g 88
@0¢M( M) — ¥e(O) e (Se - Cwm) (88)
7= —\grad©. (89)
The push-forward operation of the stress tensor (87), seeka}((84), yields
= dipy (Cwm)
_ T dYm(m) or
S=FTF FM S@FM = 2PR@ FM dC FMa (90)

i.e. exactly the same expression as developed in Eq.(50ther words, for an isotropic and volumetric thermal
expansion according to E@(?) the decomposition (1) ahdr@equivalent. This holds also for the entropy (88),
because 08 - Cy = FuSeF}, - I =trS.

4 Classical approach

The multiplicative decomposition of the deformation geadiinto a mechanical and a thermal part can also be
seen as a motivation of the structure of the free energy.dardo show this, we proceed as follows. Similarly to
Eq.(63) it followsCy = C. For the strain-energy function (37) with the specific forf®8) and|(39) one obtains

©

$(J,C,0):= o0 (U(Im) +w(lg, N1g,)) + Ye(©) = (91)
— 6L UU/R) + ulilig) + va(®). 92)

The second Piola-Kirchhoff stress tensor reads in the chfiecclassical thermo-viscoelasticity (which is not
based on the decomposition of the deformation gradient)

i" _ 812)(J567 6)
wT="ac (93)

9 Technical Report
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see [Haupt, 2000, Sec. 13.2]. If one calculates this dér&abne arrives at

1~ © _, O dw

In analogy to Eqns.(48)-(55) the second Piola-Kirchhafister

pii“ = @9 (JU’(J/(,D)C_l +2J7%/3 <(w1 + walg)I — woC — %(wllé+ 2w2||c)cl>> (95)
R 0

follows, exactly leading to the same Cauchy stresses asehefbe same holds for the entropy

5= - PEEO) - Ufe) + wll i) + (O — 00T U ) — T,

00 CH (96)

see Eq.(65). Thus, the decompositions can be seen as ritivaf the free energy form.

5 Simpleinvestigations

In the following, two simple analytical examples are invgated. First, the uniaxial tensile test for constant tem-
peratures is looked for. Second, the uniaxial tensile/aesgion test is essentially influenced by the “volumetric”
strain-energy functio/(Jy ), see [Hartmann, 2003, Hartmann and Neff, 2003, Ehlers appeEi 1998]. Thus,
this behavior is studied as well.

5.1 Uniaxial tensile-compression test with constant temperatures

In the first investigation the uniaxial tensile and compia@ssest is assumed with constant temperature. In this
case the deformation gradient has the representation

A
F = AQ &®é,  i,j=123, (97)
AQ

where \ defines the prescribed axial stretch angl the unknown lateral stretch in a bar. The unimodular left
Cauchy-Green tensor of Eq.(63) reads

2
B=(\g) %3 [ ’ g & ®é,  i,j=1,23, (98)
A
with the determinant of the deformation gradient
J =detF = \\3,. (99)
The stress state is given by
T[J 0 ]a—@aj, i,j=1,2,3, (100)
0

which has to be inserted into the thermo-elasticity refa{®4). This leads with

j—%ﬁ = (wy + w2|§)§ - wQEZ =
(w1 + ’UJQlﬁ)E - w2§2
= (w1 + wslg)Bg — wa By & ® e,
(w1 + U)QIE)EQ - wgﬁé

FACULTY 3 10



to the deviator

1
aw=\" 2 — = —2 =2 1 .
<d]3B) = g ((w1 + w2|§)(B — BQ) — wQ(B — BQ)) 2 ! € & €j. (101)
2
Here, the abbreviations -
B:=(A\g) 72X and  Bg:=(AMg) N
are introduced, see Eq.(98). In this article, the straiergies
K 5

U(Jw) = = (I + JIu° +2) (102)
’U}(lﬁ, ”E) = 5[('% — 27) + Cl()(lﬁ - 3) + C()l(“%/2 - 3\/5) (103)

with & = 0.00367 [MPa], cop1 = 0.1958 [MPa] andc;y = 0.1788 [MPa], see|[Hartmann and Neff, 2003], are
applied.Jy is defined in Eq.(17). The first and second invariant of thenaiular left Cauchy-Green tensors have
to be calculated,

lg=lg=trB=DB+2Bg = (\\3) *(\* +2)}) (104)
1 —2 ——1 _ _
lg=llg=;(g-trB)=u(B )= (AN +205%). (105)

Obviously, the experimentally observed “linear” deperadenf the temperature difference becomes obvious in
a stress-stretch diagram, see Fig. 3. It has to be rematkedihe function3(© — ©g) defined in Eql(9) with

10

engineering stressy
o

1 15 2 25 3
stretchh = L/Lg

Figure 3: Simple tension for constant temperatufes € 273 K). Representation of linear temperature depen-
dence.

a = 2.06 x 107* [K 1], see [Heimes, 2005], has no essential influence in the rahgpplications, so that the
behavior is close to a linear behavior.
From Eql(64), expressed by the component representaidy) &hd[(101), the two equations

_ RO _, 4pRrO NB B (B B2
o= T@OU (J/v) + 73/\>\?Q®0 ((wl + wolg)(B — Bg) —w2(B BQ)) (106)
0= 2O0(/p) - 229 ((wr +wslg)(B - Bo) — wa(B” - Bp)) (107)

v 3ANE 60 B @

result. In other words, for given axial stretdhand temperatur® Eq.(107) has to be solved to obtain the lateral
stretch)\q. In a second step the entire true stress (106) can be ewaluate
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5.2 Problemswith strain-energy functions
As mentioned in [Hartmann and Neff, 2003] the strain-enerart
K
U(Iw) = 5 (Jm—1)° (108)
yields in the case of uniaxial tensile tests to an increasghelateral stretch in a certain amount of the lateral

stretch (a specimen would become thicker in the tensileearfgccordingly, the investigation of the sensitivity of
Ju = J/¢is of interest. In Fig. 4(a) the behavior of ansatz (108) mxsh However, there is no essential influence

0= 273K — ‘
0 = 253K 8 - izg E
5 O =293 K s . 5 R O = 203 K ereereeeene §
0 =313K \ 0 =313K
o s O =333K e
= 4 ©=353K == ] £ 4 © =353K - )
% analytic - % \ analytic -
7 3 ' 23
s I\ I N
o | 5 \
© 2 / \ s 2
o :
0 J Ol ]
0.01 0.1 1 10 100 0.01 0.1 1 10 100
stretchA = L/ Ly stretchA = L/ Ly
@UWJ) = K/2(J —1)2 (b) U(J) = K/50(J5 + J~5 —2)

Figure 4: Lateral stretches for various strain-energy fions U (J/¢)

of the temperature-dependence introducedb® — ©). All curves are very close to each other. The proposal
(102), however, does not show such a non-physical behagerFig. 4(b), and the properties of the proposal in
[Hartmann and Neff, 2003] are passed to the temperaturendiemt case.
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