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Comparison of the multiplicative decompositionsF = FΘFM andF = FMFΘ

in finite strain thermo-elasticity

Stefan Hartmann

Institute of Applied Mechanics, Clausthal University of Technology, Adolph-Roemer-Str. 2a, 38678 Clausthal-Zellerfeld,
Germany

Abstract

In this work out the multiplicative decomposition of the deformation gradientinto a thermal and a mechanical
part is investigated on the basis of a model of thermo-elasticity. The proposed multiplicative decomposition is
studied to be in both order, i.e. in the formF = FΘFM andF = FMFΘ. It is shown that for the case of isotropy
and the assumption of a pure volumetric temperature evolution both formulations yield the same stress state.
However, in the intermediate configurations different results occur. Furthermore, some basic investigations of
uniaxial tensile/compression tests with constant temperature or problems for classical strain-energies are treated.
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1 Introduction

The incorporation of thermal effects into mechanically subjected deformation processes can be modeled by the
multiplicative decomposition of the deformation gradientF( ~X, t) = Grad ~χR( ~X, t), into a mechanical partFM

and a thermal partFΘ, respectively,
F = FMFΘ, (1)

where~x = ~χR( ~X, t) defines the motion of particle~X occupying the place~x at timet. This proposal goes back to
[Lu and Pister, 1975]. Another decomposition makes use of the reverse order

F = FΘFM , (2)

see, for example, [Yu et al., 1997] and [Miehe, 1988]. However, for both decompositions there is no systematic
comparison available to show the resulting strain and stress measures in view of the concept of dual variables, see
[Haupt and Tsakmakis, 1989, Haupt and Tsakmakis, 1996].

The multiplicative decomposition of the deformation gradient into two parts comes from the field of plasticity,
where the deformation gradient decomposes into an elastic and a plastic part,F = FeFp, see [Lee and Liu, 1967,
Lee, 1969]. For a double product, i.e. the multiplicative decomposition is carried out several times in order to
assign various physical causes to kinematical quantities,see [Lion, 2000a, Tsakmakis and Willuweit, 2004] and
its numerical treatment in [Hartmann et al., 2008] and the literature cited therein. The decomposition is also ex-
tended to constitutive models of viscoelasticity, see [Lubliner, 1985, Lion, 1997], see [Hartmann, 2002] for further
literature. A further possibility makes use of the deformation gradient’s decomposition into volume-preserving
and volume-changing parts going back to [Flory, 1961]. If a strain-energy function is built up of two terms, one
containing the volume-changing and the other the volume-preserving part, the stress state results in a pure hydro-
static stress-state caused only by the volume change and a deviatoric part only influenced by the strain-energy of
the volume-preserving deformation, see, for example, [Miehe, 1994, Hartmann and Neff, 2003] and the literature
cited therein.

In this short study a model of finite strain thermo-elasticity is developed making use of the property that most
elastomers show nearly incompressible behavior so that thebasic elasticity relation should take this into account.
Following the ideas in [Hartmann and Neff, 2003], the Flory-type decomposition into an isochoric and a volumetric
part for thermo-hyperelasticity is applied as well, which has the advantage of a systematic assignment of volumetric
effects to the spherical part of the Cauchy-stress tensor and the volume-preserving deformation to the deviatoric
stress state.

The investigations are structured as follows. First of all,the decompositionsF = FΘFM andF = FMFΘ

are studied in view of the quantities in the concerning intermediate configurations. Afterwards, some brief in-
vestigations on uniaxial tensile tests are addressed for a model applicable in rubber elasticity. The underlying
investigations are, in subsequent investigations on anisotropic and inelastic constitutive models, a basic investiga-
tion.

2 Strain and stress measures of decomposition F = FΘFM

According to the sketch in Fig. 1 the multiplicative decomposition (2) is applied,

F = FΘFM = FΘF̂MFM , (3)

where the mechanical part
FM = F̂MFM (4)

is decomposed into a volume-preserving partFM and a volume-changing part̂FM ,

F̂M = (detFM)1/3
I, (5)

FM = (detFM)−1/3
FM . (6)

Frequently, the thermal part is assumed to be purely volumetric Al

FΘ = ϕ1/3
I, ϕ = ϕ̂(Θ − Θ0), (7)
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Figure 1: Sketch of multiplicative decompositionF = FΘFM

where ϕ̂(0) = 1 should hold. Θ is the absolute temperature andΘ0 defines the reference temperature. The
determinant of the thermal deformation is

detFΘ = ϕ̂(Θ − Θ0) (8)

describing the volumetric deformation caused by the temperature changeΘ − Θ0, which is chosen to be linear

ϕ̂(Θ − Θ0) := 1 + α(Θ − Θ0). (9)

Of course, other proposals are possible. In [Lion, 2000b] and [Heimes, 2005] an exponential ansatz in applied as
well, ϕ̂(Θ − Θ0) := eα(Θ−Θ0), where Eq.(9) represents the first order approximation.

det F̂M = detFM , detFM = 1 (10)

defines the volumetric Al mechanical deformation. In view ofthe total deformation

detF = det(FΘFM) = (detFΘ)(detFM) = ϕ̂(Θ − Θ0)(detFM) (11)

holds. Accordingly, we have

F = F̂F with

{

F̂ = (ϕ detFM)1/3
I

F = FM .
(12)

If the densities are considered,
ρR = (detF)ρ = (detFM)ρM (13)

defines the density in the reference configuration,ρ symbolizes the density in the current configuration, and

ρM = (detFΘ)ρ = ϕρ (14)

denotes the density in the mechanical intermediate configuration.
Sometimes it is useful to introduce the abbreviation for thedeterminants

J := detF = JΘJM , (15)

JΘ := detFΘ = ϕ, (16)

JM := detFM = J/ϕ, (17)

which are used later for short notational purposes.
Using the imagination of a fictitious thermal unloading, similar to the case of the multiplicative decomposition

of the deformation gradient into an elastic and a plastic state, see [Haupt, 1985], defines the mechanical Green
strain tensor

EM := lim
Θ−Θ0→0

E =
1

2
(FT

MFM − I) (18)
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where

E =
1

2
(FT

F − I) (19)

is the Green strain tensor itself. This motivates the thermal part of Greenian-type

EΘ = E − EM =
1

2
(FT

F − F
T
MFM) =

1

2
(C − CM), (20)

or vice versa the additive decomposition
E = EM + EΘ. (21)

The push-forward operationF−T
M EF

−1
M yields the decomposition

Γ̂ = Γ̂M + Γ̂Θ (22)

with

Γ̂ = F
−T
M EF

−1
M =

1

2
(FT

ΘFΘ − F
−1
M F

−T
M ) =

1

2
(ϕ2/3

I − B
−1
M ) =

ϕ2/3

3
(I − B

−1) (23)

Γ̂M = F
−T
M EMF

−1
M =

1

2
(I − F

−1
M F

−T
M ) =

1

2
(I − B

−1
M ), (24)

Γ̂Θ = F
−T
M EΘF

−1
M =

1

2
(FT

ΘFΘ − I) =
1

2
(CΘ − I) =

1

2
(ϕ2/3 − 1)I, (25)

whereΓ̂, Γ̂M andΓ̂Θ measure the strains relative to the mechanical intermediate configuration. Here, the right and
left Cauchy-Green tensors

C = F
T
F, CΘ = F

T
ΘFΘ, CM = F

T
MFM , (26)

B = FF
T , BΘ = FΘF

T
Θ, BM = FMF

T
M (27)

are introduced. The definition of the strain measures (24) and (25) have the advantage that they are purely me-
chanical and purely thermal, respectively.

Additionally, strain-rate tensors on the mechanical intermediate configuration can be defined on the basis of the
material time derivative of (18), (19) and (20) by the corresponding push-forward operationF−T

M (. . .)F−1
M . This

yields the strain-rate measures relative toBΘ

△

Γ̂ = F
−T
M ĖF

−1
M = ˙̂

Γ + L
T
MΓ̂ + Γ̂LM , (28)

△

Γ̂M = F
−T
M ĖMF

−1
M = ˙̂

ΓM + L
T
MΓ̂M + Γ̂MLM =

1

2
(LM + L

T
M) =: DM , (29)

△

Γ̂Θ = F
−T
M ĖΘF

−1
M = ˙̂

ΓΘ + L
T
MΓ̂Θ + Γ̂ΘLM . (30)

Obviously, the additive decomposition
△

Γ̂ =
△

Γ̂M +
△

Γ̂Θ (31)

is inherently defined. The strain-rate
△

Γ̂M is purely mechanical, whereas the thermal strain-rate relative to the
intermediate state can be calculated by

△

Γ̂Θ =
1

3
ϕ̂′(Θ − Θ0)Θ̇(t)ϕ−1/3

I

︸ ︷︷ ︸

˙̂
ΓΘ

+(ϕ2/3 − 1)
△

Γ̂M , (32)

see Eqns.(30), (25), and (29).
Next, these strain measures are used within the specific stress power to develop appropriate stress measures,

p =
1

ρR
T̃ · Ė =

1

ρR
T̃ · (FT

M

△

Γ̂FM) =
1

ρR

(

FMT̃F
T
M

)

·
△

Γ̂ =
1

ρR
ŜM ·

△

Γ̂ (33)
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exploiting Eq.(28) and introducing a Kirchhoff-type stress tensor relative to the mechanical intermediate configu-
ration

ŜM = FMT̃F
T
M . (34)

T̃ = (detF)F−1
TF

−T defines the second Piola-Kirchhoff stress tensor andT the Cauchy-stresses.
Inserting the strain-rates (31) and (32) into the specific stress power (33) leads to

p =
1

ρR
ŜM ·

△

Γ̂ =
1

ρR
ŜM · (

△

Γ̂M +
△

Γ̂Θ) =
1

ρR
ϕ2/3

ŜM ·
△

Γ̂M +
ϕ̂′(Θ − Θ0)ϕ

−1/3Θ̇(t)

3ρR
(tr ŜM). (35)

In view of thermo-mechanical processes the Clausius-Duheminequality has to be fulfilled requiring the stress
power

−ψ̇ − Θ̇s +
1

ρR
T̃ · Ė − ~q

ρΘ
· grad Θ = −ψ̇ − Θ̇s +

1

ρR
SM ·

△

Γ̂ − ~q

ρΘ
· grad Θ ≥ 0, (36)

whereψ defines the specific free energy,s the entropy, and~q the heat flux vector. In the following, the proposal of
[Lion, 2000b] and [Heimes, 2005] is taken up where the free-energy depends on the mechanical deformationEM

and the temperatureΘ,
ψ(EM ,Θ) = ψM(CM ,Θ) + ψΘ(Θ). (37)

Of course, the first natural assumption would beψ(CM ,Θ) = ψM(CM) + ψΘ(Θ), i.e. there are clear assignments
of mechanical and thermal induced stresses. However, in rubber elasticity it turns out experimentally that the stress
state depends linearly on the temperature. Thus,ψM(CM ,Θ) is assumed to be a function of the temperature as
well. The dependence of the mechanical part is assumed to be linear in the temperature

ψM(CM ,Θ) =
Θ

Θ0
ψM(CM) (38)

with
ψM(CM) = U(JM) + υ(CM) = U(JM) + w(I

CM
, II

CM
), (39)

υ(CM) = w(I
CM

, II
CM

). Here, the mechanical deformation is decomposed into volume-changing and preserving
parts, defined by

JM = detFM = (detCM)1/2 (40)

of Eq.(17) using the unimodular, mechanical right Cauchy-Green tensor

CM = (detCM)−1/3
CM , detCM = 1. (41)

The thermal part of the strain-energy (37) is defined by

ψΘ(Θ) =
cp

ρR

((

(Θ − Θ0) − Θ ln
Θ

Θ0

)

(1 − kpΘ0) −
1

2
kp(Θ

2 − Θ2
0)

)

, (42)

see [Heimes, 2005].
The evaluation of the material time-derivative of the free energyψ, see Eq.(37),

ψ̇(EM ,Θ) =

(
1

Θ0
ψM(CM)

)

Θ̇ +
Θ

Θ0

dψM(CM)

dCM
· ĊM + ψ′

Θ(Θ)Θ̇, (43)

is required in the Clausius-Duhem inequality (36) yielding, by means of definition (34) and the time derivative of

(18) expressed by the mechanical right Cauchy-Green tensor(26)3, ĊM = 2FT
M

△

Γ̂MFM ,

(
1

ρR
ϕ2/3

ŜM − 2
Θ

Θ0
FM

dψM(CM)

dCM
F

T
M

)

·
△

Γ̂M

+

(

−s −
(

1

Θ0
ψM(CM) + ψ′

Θ(Θ)

)

+
1

3ρR
ϕ−1/3ϕ̂′(Θ − Θ0)(tr ŜM)

)

Θ̇

− ~q

ρΘ
· grad Θ ≥ 0 (44)
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Exploiting arbitrary mechanical strain and temperature paths commonly implies the three following expressions:

ŜM =
2ρR

ϕ2/3

Θ

Θ0
FM

dψM(CM)

dCM
F

T
M , (45)

s = − 1

Θ0
ψM(CM) − ψ′

Θ(Θ) +
1

3ρR
ϕ−1/3ϕ̂′(Θ − Θ0)(tr ŜM), (46)

~q = −κ grad Θ, κ ≥ 0 (47)

In the following, the stress tensor and the entropy are expressed by quantities relative to the current configura-
tion. The particular strain-energy function (39) yields for the derivatives in the elasticity relation (45) the terms

dU((detCM)1/2)

dCM
=

1

2
JMU ′(JM)C−1

M (48)

and
dυ(CM(CM))

dCM
=

[
dCM

dCM

]T
dυ

dCM
(49)

with
[
dCM

dCM

]T

= (detCM)−1/3

[

I − 1

3
(C−1

M ⊗ CM)

]

= J
−2/3
M

[

I − 1

3
(C

−1

M ⊗ CM)

]

. (50)

I defines the identity tensor of fourth order,

I = [I ⊗ I]
T23 = δikδjl~ei ⊗ ~ej ⊗ ~ek ⊗ ~el, (51)

here defined in Cartesian coordinates,IA = A. Obviously,C−1
M ⊗ CM = C

−1

M ⊗ CM holds. Caused by the
particular dependence on the invariants of the mechanical unimodular right Cauchy-Green tensors, the application
of the chain-rule leads to

dυ

dCM
=

∂w

∂I
CM

dI
CM

dCM
+

∂w

∂II
CM

dII
CM

dCM
= (w1 + w2I

CM
)I − w2CM (52)

with

w1(ICM
, II

CM
) =

∂w

∂I
CM

and w2(ICM
, II

CM
) =

∂w

∂II
CM

. (53)

In other words, we have

dψM(CM)

dCM
= JMU ′(JM)C−1

M + 2J
−2/3
M

[

I − 1

3
C

−1

M ⊗ CM

]
dυ

dCM
= (54)

= J
1/3
M U ′(JM)C

−1

M + 2J
−2/3
M

(

(w1 + w2I
CM

)I − w2CM − 1

3
(w1I

CM
+ 2w2II

CM
)C

−1

M

)

. (55)

In the following, these expressions are used to express the elasticity relation relative to the current and the reference
configuration. First, the push-forward operation of the second Piola-Kirchhoff tensor yields

S = FT̃F
T = F(F−1

M ŜMF
−T
M )FT =

= FΘFM(F−1
M ŜMF

−T
M )F−T

M F
T
Θ =

= FΘŜMF
T
Θ = ϕ2/3

ŜM (56)

where use is made of the decomposition (2) and Eq.(34).S = (detF)T defines the weighted Cauchy tensor, i.e.
the Kirchhoff stresses. Comparing (56) with (45) yields

S = 2ρR
Θ

Θ0
FM

dψM(CM)

dCM
F

T
M = (57)

= ρR
Θ

Θ0
JMU ′(JM)I + 2ρR

Θ

Θ0
J
−2/3
M [FM ⊗ FM ]

T23

[

I − 1

3
C

−1
M ⊗ CM

]
dυ

dCM
=

= ρR
Θ

Θ0
JMU ′(JM)I + 2ρR

Θ

Θ0

[

I − 1

3
I ⊗ I

]
[
FM ⊗ FM

]T23 dυ

dCM
=

= ρR
Θ

Θ0
JMU ′(JM)I + 2ρR

Θ

Θ0

(

FM
dυ

dCM
F

T

M

)D

. (58)
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Exploiting the property

[FM ⊗ FM ]
T23

[

I − 1

3
C

−1
M ⊗ CM

]

=

[

I − 1

3
I ⊗ I

]

[FM ⊗ FM ]
T23 , (59)

where

D = I − 1

3
I ⊗ I (60)

defines the deviator operatorDA = A
D = A − 1

3 (trA)I, yields under the assumption of isotropy the Kirchhoff
stress tensor

S = ρR
Θ

Θ0
JMU ′(JM)I + 2ρR

Θ

Θ0

(

BM
dυ

dBM

)D

. (61)

Finally, the Cauchy stress tensor reads

T =
ρR

ϕ

Θ

Θ0
U ′(J/ϕ)I +

2ρR

J

Θ

Θ0

(
dυ

dBM
BM

)D

. (62)

If one considers the mechanical unimodular left Cauchy-Green tensor

BM = J
−2/3
M BM = (J/ϕ)−2/3ϕ−2/3

B = J−2/3
B = B, (63)

Eq.(62) can be expressed by

T =
ρR

ϕ

Θ

Θ0
U ′(J/ϕ)I +

2ρR

J

Θ

Θ0

(
dυ

dB
B

)D

, (64)

i.e. only the volumetric part of the strain-energy functionU(JM) = U(J/ϕ) depends on the temperature by the
factor ϕ̂−1(Θ − Θ0)U

′(J/ϕ̂(Θ − Θ0)), and the overall stress state is assumed to increase linearly with Θ/Θ0.
Sinceϕ ≈ 1 holds, the curves are only scarcely influenced.

Furthermore, the entropy (46) reads

s = − 1

Θ0
ψM(CM) − ψ′

Θ(Θ) +
1

3ρR
ϕ−1/3ϕ̂′(Θ − Θ0)(trS) =

= − 1

Θ0

(

U

(
J

ϕ

)

+ υ̂(C)

)

− ψ′
Θ(Θ) +

Θ

Θ0

ϕ̂′(Θ − Θ0)

ϕ2
JU ′

(
J

ϕ

)

(65)

using relation (56).

3 Strain and stress measures of decomposition F = FMFΘ

In this section the decomposition (1) is considered, see Fig. 2. However, we extend again the investigations to the
split into a volume-preserving and a volume-changing part

F = FMFΘ = F̂MFMFΘ, (66)

defined in Eqns.(4), (5) and (6). The Green strain tensor measuring the thermal deformation is defined by a fictive
mechanical unloading

ẼΘ := lim
‖FM‖→0

E =
1

2
(FT

ΘFΘ − I) (67)

leading to

ẼΘ =
1

2
(ϕ2/3 − 1)I, (68)

where the thermal part of the deformation gradient (7) is inserted. Accordingly, the mechanical part reads

ẼM = E − ẼΘ =
1

2
(FT

F − F
T
ΘFΘ) =

1

2
(C − ϕ2/3

I). (69)
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Figure 2: Sketch of multiplicative decomposition (1)

In order to obtain the strain measures on the thermal intermediate configuration, the push-forward operationγ̂ =
F

−T
Θ EF

−1
Θ is introduced yielding

γ̂ =
1

2
(FT

MFM − F
−T
Θ F

−1
Θ ) =

1

2
(CM − B

−1
Θ ) =

1

2
(CM − ϕ−2/3

I) (70)

γ̂M = F
−T
Θ ẼMF

−1
Θ =

1

2
(FT

MFM − I) =
1

2
(CM − I) (71)

γ̂Θ = F
−T
Θ ẼΘF

−1
Θ =

1

2
(I − F

−T
Θ F

−1
Θ ) =

1

2
(1 − ϕ−2/3)I (72)

i.e.
γ̂ = γ̂M + γ̂Θ. (73)

Using

ḞΘ =
1

3
ϕ̇ϕ−2/3

I (74)

and

LΘ = ḞΘF
−1
Θ =

ϕ̇

3ϕ
I (75)

the strain-rate tensors relative to the reference configuration read

Ė =
1

2
Ċ = ˙̃

EΘ + ˙̃
EM (76)

˙̃
EM =

1

2
(Ċ − 2

3
ϕ̇ϕ−1/3

I) =
1

2
Ċ − 1

3
ϕ̇ϕ−1/3

I (77)

˙̃
EΘ =

1

2
(Ḟ

T

ΘFΘ + F
T
ΘḞΘ) =

1

3
ϕ̇ϕ−1/3

I (78)

and the push-forward operation to the thermal intermediateconfiguration yields

N

γ̂ = F
−T
Θ ĖF

−1
Θ = ˙̂γ + L

T
Θγ̂ + γ̂LΘ = ˙̂γ +

2

3

ϕ̇

ϕ
γ̂ (79)

N

γ̂M = F
−T
Θ

˙̃
EMF

−1
Θ = ˙̂γM + L

T
Θγ̂M + γ̂MLΘ = ˙̂γM +

2

3

ϕ̇

ϕ
γ̂M =

1

2
ĊM +

1

3

ϕ̇

ϕ
CM − 1

3

ϕ̇

ϕ
I (80)

N

γ̂Θ = F
−T
Θ

˙̃
EΘF

−1
Θ = ˙̂γΘ + L

T
Θγ̂Θ + γ̂ΘLΘ = DΘ = LΘ =

ϕ̇

3ϕ
I (81)

with the Oldroyd strain-rate
N

γ̂ =
N

γ̂M +
N

γ̂Θ. (82)
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In the following, the specific stress power has to be evaluated leading to

p =
1

ρR
T̃ · Ė =

1

ρR
T̃ · (FT

Θ

N

γ̂FΘ) =
1

ρR
(FΘT̃F

T
Θ) ·

N

γ̂ =
1

ρR
ŜΘ ·

N

γ̂, (83)

with the stress tensor̂SΘ relative to the thermal intermediate configuration

ŜΘ = FΘT̃F
T
Θ = ϕ2/3

T̃. (84)

If one inserts the additive decomposition (82) into (83) andexploits Eqns.(80) and (81), the following expression
for the stress power results,

p =
1

ρR
ŜΘ · (

N

γ̂M +
N

γ̂Θ) =
1

ρR
ŜΘ ·

(
1

2
ĊM +

1

3

ϕ̇

ϕ
CM

)

. (85)

Inserting this expression with the material time derivative of the specific strain-energy function (43) into the
Clausius-Duhem inequality (36) yields

(

−s − 1

Θ0
ψM(CM) − ψ′

Θ(Θ) +
ϕ̂′(Θ − Θ0)

3ρRϕ
(ŜΘ · CM)

)

Θ̇

+

(
1

2ρR
ŜΘ − Θ

Θ0

dψM(CM)

dCM

)

· ĊM − ~q

ρΘ
· grad Θ ≥ 0. (86)

For independent thermal and mechanical processes a sufficient condition to satisfy the Clausius-Duhem inequality
is

ŜΘ = 2ρR
Θ

Θ0

dψM(CM)

dCM
(87)

s = − 1

Θ0
ψM(CM) − ψ′

Θ(Θ) +
ϕ̂′(Θ − Θ0)

3ρRϕ
(ŜΘ · CM) (88)

~q = −λ grad Θ. (89)

The push-forward operation of the stress tensor (87), see also Eq.(84), yields

S = FT̃F
T = FMŜΘF

T
M = 2ρR

Θ

Θ0
FM

dψM(CM)

dCM
F

T
M , (90)

i.e. exactly the same expression as developed in Eq.(57). Inother words, for an isotropic and volumetric thermal
expansion according to Eq.(7), the decomposition (1) and (2) are equivalent. This holds also for the entropy (88),
because of̂SΘ · CM = FMŜΘF

T
M · I = trS.

4 Classical approach

The multiplicative decomposition of the deformation gradient into a mechanical and a thermal part can also be
seen as a motivation of the structure of the free energy. In order to show this, we proceed as follows. Similarly to
Eq.(63) it followsCM = C. For the strain-energy function (37) with the specific forms(38) and (39) one obtains

ψ̂(J,C,Θ) :=
Θ

Θ0

(
U(JM) + w(I

CM
, II

CM
)
)

+ ψΘ(Θ) = (91)

=
Θ

Θ0
U(J/ϕ) +

Θ

Θ0
w(I

C
, II

C
) + ψΘ(Θ). (92)

The second Piola-Kirchhoff stress tensor reads in the case of the classical thermo-viscoelasticity (which is not
based on the decomposition of the deformation gradient)

1

ρR
T̃ =

∂ψ̂(J,C,Θ)

∂C
, (93)
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see [Haupt, 2000, Sec. 13.2]. If one calculates this derivative, one arrives at

1

ρR
T̃ =

Θ

Θ0
JU ′(J/ϕ) + 2

Θ

Θ0

dw

dC
. (94)

In analogy to Eqns.(48)-(55) the second Piola-Kirchhoff tensor

1

ρR
T̃ =

Θ

Θ0

(

JU ′(J/ϕ)C−1 + 2J−2/3

(

(w1 + w2I
C

)I − w2C − 1

3
(w1I

C
+ 2w2II

C
)C

−1
))

(95)

follows, exactly leading to the same Cauchy stresses as before. The same holds for the entropy

s = −∂ψ̂(J,C,Θ)

∂Θ
= − 1

Θ0
(U(J/ϕ) + w(I

C
, II

C
)) + Jϕ̂′(Θ − Θ0)J

−2 Θ

Θ0
U ′(J/ϕ) − ∂ψΘ

∂Θ
, (96)

see Eq.(65). Thus, the decompositions can be seen as motivations of the free energy form.

5 Simple investigations

In the following, two simple analytical examples are investigated. First, the uniaxial tensile test for constant tem-
peratures is looked for. Second, the uniaxial tensile/compression test is essentially influenced by the “volumetric”
strain-energy functionU(JM), see [Hartmann, 2003, Hartmann and Neff, 2003, Ehlers and Eipper, 1998]. Thus,
this behavior is studied as well.

5.1 Uniaxial tensile-compression test with constant temperatures

In the first investigation the uniaxial tensile and compression test is assumed with constant temperature. In this
case the deformation gradient has the representation

F =





λ
λQ

λQ



~ei ⊗ ~ej , i, j = 1, 2, 3, (97)

whereλ defines the prescribed axial stretch andλQ the unknown lateral stretch in a bar. The unimodular left
Cauchy-Green tensor of Eq.(63) reads

B = (λλ2
Q)−2/3





λ2

λ2
Q

λ2
Q



~ei ⊗ ~ej , i, j = 1, 2, 3, (98)

with the determinant of the deformation gradient

J = detF = λλ2
Q. (99)

The stress state is given by

T =





σ
0

0



~ei ⊗ ~ej , i, j = 1, 2, 3, (100)

which has to be inserted into the thermo-elasticity relation (64). This leads with

dυ

dB
B = (w1 + w2I

B
)B − w2B

2
=

=






(w1 + w2I
B

)B − w2B
2

(w1 + w2I
B

)BQ − w2B
2

Q

(w1 + w2I
B

)BQ − w2B
2

Q




~ei ⊗ ~ej ,
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to the deviator

(
dυ

dB
B

)D

=
2

3

(

(w1 + w2I
B

)(B − BQ) − w2(B
2 − B

2

Q)
)







1

−1

2

−1

2







~ei ⊗ ~ej . (101)

Here, the abbreviations
B := (λλ2

Q)−2/3λ2 and BQ := (λλ2
Q)−2/3λ2

Q

are introduced, see Eq.(98). In this article, the strain-energies

U(JM) =
K

50

(
J5

M + J−5
M + 2

)
(102)

w(I
B

, II
B

) = α̂(I3
B
− 27) + c10(IB − 3) + c01(II

3/2

B
− 3

√
3) (103)

with α̂ = 0.00367 [MPa], c01 = 0.1958 [MPa] andc10 = 0.1788 [MPa], see [Hartmann and Neff, 2003], are
applied.JM is defined in Eq.(17). The first and second invariant of the unimodular left Cauchy-Green tensors have
to be calculated,

I
B

= I
C

= trB = B + 2BQ = (λλ2
Q)−2/3(λ2 + 2λ2

Q) (104)

II
B

= II
C

=
1

2
(I

B
− trB

2
) = tr (B

−1
) = (λλ2

Q)2/3(λ−2 + 2λ−2
Q ). (105)

Obviously, the experimentally observed “linear” dependence of the temperature difference becomes obvious in
a stress-stretch diagram, see Fig. 3. It has to be remarked, that the functionϕ̂(Θ − Θ0) defined in Eq.(9) with

-10
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Figure 3: Simple tension for constant temperatures (Θ0 = 273 K). Representation of linear temperature depen-
dence.

α = 2.06 × 10−4 [K−1], see [Heimes, 2005], has no essential influence in the rangeof applications, so that the
behavior is close to a linear behavior.

From Eq.(64), expressed by the component representation (100) and (101), the two equations

σ =
ρRΘ

ϕΘ0
U ′(J/ϕ) +

4ρRΘ

3λλ2
QΘ0

(

(w1 + w2I
B

)(B − BQ) − w2(B
2 − B

2

Q)
)

(106)

0 =
ρRΘ

ϕΘ0
U ′(J/ϕ) − 2ρRΘ

3λλ2
QΘ0

(

(w1 + w2I
B

)(B − BQ) − w2(B
2 − B

2

Q)
)

(107)

result. In other words, for given axial stretchλ and temperatureΘ Eq.(107) has to be solved to obtain the lateral
stretchλQ. In a second step the entire true stress (106) can be evaluated.

11 Technical Report



5.2 Problems with strain-energy functions

As mentioned in [Hartmann and Neff, 2003] the strain-energypart

U(JM) =
K

2
(JM − 1)2 (108)

yields in the case of uniaxial tensile tests to an increase ofthe lateral stretch in a certain amount of the lateral
stretch (a specimen would become thicker in the tensile range). Accordingly, the investigation of the sensitivity of
JM = J/ϕ is of interest. In Fig. 4(a) the behavior of ansatz (108) is shown. However, there is no essential influence
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(a) U(J) = K/2(J − 1)2
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(b) U(J) = K/50(J5 + J−5
− 2)

Figure 4: Lateral stretches for various strain-energy functionsU(J/ϕ)

of the temperature-dependence introduced byϕ̂(Θ − Θ0). All curves are very close to each other. The proposal
(102), however, does not show such a non-physical behavior,see Fig. 4(b), and the properties of the proposal in
[Hartmann and Neff, 2003] are passed to the temperature-dependent case.
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