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The Class of Simo & Pister-type Hyperelasticity Relations

Stefan Hartmann

Institute of Applied Mechanics, Clausthal University of Technology, hleRoemer-Str. 2a, 38678 Clausthal-Zellerfeld,
Germany, stefan.hartmann@tu-clausthal.de

Abstract

A finite strain hyperelasticity relation, which is frequently utilized in the field ofratational Mechanics, has
been proposed by [Simo and Pister, 1984]. The original strain-grfiengtion of this elasticity relation can be
modified so that a general representation is obtained. Accordingticydar studies of the properties of the orig-
inal and further strain-energy functions are necessary. This inclalt the derivation of the stress computation
and the consistent tangent operator within non-linear finite element @alys simple homogeneous deforma-
tions such as simple tension/compression and simple shear. The lattef sample homogeneous deformations
are required as testing examples in the verification step of the more feesfiaation and validation process.
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1 Introduction

Although a huge number of constitutive models in finite stielasticity have been published so far, even the most
famous are not investigated in detail. Hyperelasticitptiohs in the finite strain regime are used for modeling the
pure elastic response or they are embedded in models dedeloginite strain viscoelasticity, plasticity or vis-
coplasticity (see [Lion, 1996, Reese and Govindjee, 1998frkann, 2002, Lihrs et al., 1997] and the literature
cited therein). The necessity of detailed investigationthe analytical level was shown by [Ehlers and Eipper, 1998]
since there exist models showing that even in simple tersigpecimen becomes thicker after a certain amount
of axial stretching (or it gets thinner in compression), ftffeann and Neff, 2003]. This, however, contradicts our
daily experience. Furthermore, simple analytical and-haHlytical examples are necessary for code verification
purposes representing one of the verification steps in thicagion and validation concepts (see [Roache, 1998,
Schwer, 2001]). Here, it is thought of verifying finite elemiénplementations, which is one of the most often
applied numerical method in engineering applications.

In view of the verification and validation step the stress paotation is treated and the consistent linearization,
which is necessary in a Newton-like iteration scheme indieiements, is appended. For code verification two
simple deformations, namely simple tension and simplersheaproposed. Particularly, simple shear turns out to
be investigated in more detail for both the finite elementriszation and for the constitutive model applied here.

The investigations are carried out at a frequently applietenial model proposed by [Simo and Pister, 1984].
It will turn out that this model shows some physical drawlsack

2 Model description

In the following, the basic ideas and properties of the SimBigter-type hyperelasticity models are summarized,
where further topics are discussed. In this respect, we t@tbe original literature, [Simo and Pister, 1984]. This
class of hyperelasticity relations are based on a stragnggrfunction of the type

b(Jle) =T +w(ie) =U(J) — plnJ + S(le - 3), 1)

where.J = det F defines the determinant of the deformation gradiént Gradyr(X,t), 7 = Yr(X,t) sym-
bolizes the motion of a material poidf, and I = tr C is the first invariant of the right Cauchy-Green tensor
C =FTF. trA = q;F denotes the trace operator. In other words,

UW)=U)—plnd,  w(c)=5(c—3) )
v =vw-L, w'(ic) = 5 )
TN =U"(N)+ 5. wle)=0 @

hold, with the property/(1) = 0 andw(3) = 0 (strain-energy free undeformed configuration). In theiogl
paper the strain-energy

A InJ o A L—InJ
=3 — U"(J)=A VPR (5)

is defined. In the investigations carried out here, we do peti$y the strain-energy pati(.J) at the moment and
look for those described in the literature. A number of fimres U (J), which have been proposed in connection
with strain-energy functions decomposed into volume-gméag and volume-changing parts, are summarized, see
Tabl 1, see [Hartmann and Neff, 2003]. Usually, these péitsecstrain-energy function are applied in the context
of models based on the multiplicative decomposition of tsferation gradient into an isochoric and a volumetric
part. In this respect, the original Simo & Pister model camraglified by changing the strain-energy p&it/),
even though it fits not into this class of models.

First, the three-dimensional stress calculation and thete@ consistent linearization are summarized. The
second Piola-Kirchhoff tens& = JF~!aF~7 reads in the case of hyperelasticity, see [Truesdell ant] MNe$5,
‘Ogden, 1984, Haupt, 2002],

U(J) (InJ)?, U'(J)=A

N [ R— di , C“ici
Sf2ﬁf2U(J)dC+2w(lc)dCf (6)

=T (J)JC ! + ul, )
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Table 1: Various strain-energy functiotif./) (see[Hartmann and Neff, 2003])

U(J)/A U'(J)/A U"”(J)/A Reference

-1 J—1 1
(=12 + W2 %(J—l-&-%lnj)
InJ =1InJ (1 —InJ [Simo et al., 1985
é (? —1+48In J) % ( (1+8— Jﬁ)) [Ogden, 1972]

lef (J2-1-2InJ) % %) [Simo and Taylor, 1991]
- % - [Miehe, 1994]
JB(BInJ —1)+1 32 Jl{ﬁ InJ B2J8=2(1+ (8 —1)InJ) | [Hartmann, 2002]
Liu etal., 1994]
1y _ 1 11 2 c
i (v ) § (535 +32) [ANSYS, 2000]
% (1 - % + ﬁ 5= J=(+8) [Murnaghan, 1951, S.68]
J5 -2 4

= (JP+J75-2) 0 (J*—=J7F) % (4J3 +6J77) [Hartmann and Neff, 2003]

7(1+J%2—1nJ) [Simo and Taylor, 1982]

g
M~ [—

N —

J—InJ -1

JInJ—-J+1 InJ

o=

3%“2 _ J—2)2

whereo is the Cauchy stress tensor ahdefines the identity tensor of second order. Here, the oglsti

a7 _ 1JC ! and dic

ac 2 dac ! (8)

have been e>7<pI0|ted In order to obtain quantities opagatinthe current configuration, the push-forward operator
F = [F ® F]"** is applied, which leads to the Cauchy stress tensor

1 1 — "
= —FS=_FSFT = I+ZB 9
ol Jf 5 U(J)+J 9)

with the left Cauchy-Green tensB = FF7.

Second, the consistent tangent operator concerned hasinedstigated. The consistent linearization step is
reckoned by applying the Gateaux-derivatiiley(h(A)[H] = %h(A + AH)|,—0) of the elasticity relatiori (7)

CH = 2D¢c S(C)[H] = 2——H, (10)

leading to

Tos

é— (U”(J)ﬁ + U’(J)J) clec -2 ()J[ctec (11)
The particular transpositiohsys of the fourth order tensor is defined by the transpositiorhefd¢econd and third
index, A2 = a'*ilg; ® §; ® g ® §. The push-forward operation of the material tangent orgcsfiatial tangent
operator leads to

C= %féﬂ = (U”(J)J +T( ) 11— 20 (J)T = (12)
= (U (T + U (INIDT -2 (U’(J) %)I (13)
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where use is made of the properties

[A ®B]™ C = ACB” (14)
[A@B] Tﬂ — [AT @ BT]™ (15)
[A®B]™[CeD]= [A@B T2s C®D} [ACB” ® D] (16)
CeD][AwB[™ = |[Co [A” ©B"]"™* D| = [C© ATDB] (17)
[A ®B]"™ [C®D]™ = [AC ® BD]"™. (18)

A, B, C, andD are second order tensors.
In the small strain cas® — I, the tangent operator reads

CL=AN&T+2uT = Cp_g = (U”(n + U’(1)) 10120 (1)T (19)

Z =01 I]T23 denotes the fourth order identity tensor), i.e. the LamestamisA andp of small strain linear
elasticity have the form

A=T'()+T 1) =U"(1)+U'(1) (20)
p=-U1(1) = —U'(1) +p (21)

which restricts the form of the strain-energy functioit.J), see Ed.(3), becaugé’(1) = 0 has to hold due to
Eq.(21). Thus, Eq.(20) reads = U”(1). At first sight, any function/(J) with the propertyA = U" (1),
U(1) = 0, andU’(1) = 0 could be chosen. However, not all of these models might yblgsically ideal slopes
so that it must be recommended to investigate each new mbpary carefully.

3 Simple homogeneous defor mations

In the following, a number of models are investigated in vigvsimple shear and uniaxial tension-compression
behavior. The advantage of these examples is that they wigjdtanalytical or half-analytical expressions which
are useful for both the study of the principal physical mdokehavior and for verifying, for example, a finite
element implementation of the model. Here, three modelsaestigated, namely the

1. original model of [Simo and Pister, 1984]

A ) o I " 1—1InJ
U(J) = 2(an) , U'(J)=A 7 U"(J) = AiJ2 , (22)
calledModel ],
2. the model of [Simo and Taylor, 1991] calldtbdel 2 which is defined by the ansatz
A [J? 1
A 1
! F— —_—
=5 (1-5). (24)
A 1
1" _ o
U (J)f2 <1+J2>, (25)
see fifth row of Tal. 1, and
3. the model of [Hartmann and Neff, 2003] reading
A
U(J) = = (JP+J7°-2), (26)
A
U'(J) = — (J4 - J9, (27)
U'(J) = 1Ao (47° +6J77) (28)

see last row of Tab./1, which is definedMsdel 3
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3.1 Simpleshear

The case of simple shear defines a homogeneous deformatimmfoimz = X + Y,y =Y, andz = Z leading
to the deformation gradient

F = 1 € ® €5, J=detF =1, (29)
1
and, accordingly, the left Cauchy-Green tensor takes time fo
1+k% &
1

Fig.[1 shows the geometry and the stress boundary conditimmserned. The components of the Cauchy stress

Y Y Oyy T Oyy
K 1
<—>‘ Ogy
L ? N
! \ ‘\'/ /T Ozz 02z
1 T ~L
i \ T z
- I o l
L—j'»j Tyy Oyy
(a) Geometry (b) Stress boundary conditions
Figure 1: Simple shear
tensor[(9) read
Oxy = UK, (31)
Oza = U (1) + p(1+ K?) = pux?, (32)
Oyy = 0zy = U(1)+p=0 (33)

for the given geometrical quantities (29) and (30). Sumpgiy, the stresses,, ando.. are zero, which is
independent of the magnitude of the shear parametsee Eq.(3) for/ = 1. In other words, independently of
the magnitude of the shear parametdhere are neither normal stressegidirection nor normal stresses i
direction, which might be of sense in the case of a smallrstfa@ory. However, in the case of finite deformations
it is more than questionable that, although a “plane stradblpm” is treated, no stresseg, ando .. occur to
guarantee the geometrical constraints in thickness arittakedirection. This holds for all Simo & Pister-type
models.

The simple shear problem is useful, for example, for vemifya finite element code both for a new elements
of a new constitutive model. In the simple shear case the atatipns might be conducted using plane strain
conditions of Figl 2(a) using plane elements or three-dsimral hexahedrals, or using the boundary conditions
depicted in Figl. R(b) for three-dimensional elements. mnlditer case of Fig. 2 the strain-energy functiéqy),
or more precisely the paramet&r controls the closeness to the analytical solution, i.eAfo> 1, the isochoric
property of simple sheadlet F = 1, is approximated.

3.2 Tension-compression behavior

In [Ehlers and Eipper, 1998] and later on in [Hartmann and ,Ne¥03] strain-energy functions, which are related
to the multiplicative decomposition of the deformationdjeant into a volume changing and an isochoric part, are
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] ]
(a) (b)

Figure 2: Four eight-noded volumetric elements and theimndary conditions in the case of simple shear

investigated. Most of them make use of the functiéhs/) shown in Tabl 1. Only for the model proposed by
[Hartmann and Neff, 2003] a non-physical behavior was nseoled. All other proposals in Tab. 1 may yield in
tension an increasing of the thickness (or in compressicgceedse of the thickness). Accordingly, every strain-
energy function should be investigated in view of its phgbroperties or its range of applicability, particularly,
for tension and compression. Since the Simo & Pister-typeetsoare not based on the decomposition into
volume changing and volume preserving deformations buingasne part,U(.J), which depends only on the
volume-changing deformation, studies are of interest.

Normally, the assumption of a uniaxial tension/compressieformation yields one non-linear equation in the
case of compressible hyperelasticity, which has to be datuenerically. In the case of Cartesian coordinates, the
deformationr = A X,y = A\qY, andz = A\ Z is assumed leading to the deformation gradient

A
F:[ Ao ]a@éj, J =detF = A\, (34)
AQ

)\2
2

A symbolizes the prescribed axial stretch (current lengtr avitial length,\ = L/L,) and A\ represents the
unknown lateral stretch. In respect of Eq.(9), the strest® stnd the lateral stretch can be obtained by the two
equations

and the left Cauchy-Green tensor

€ ® €. (39)

2
AQ

= 7 Iz 1
Oue = U (ANG) + %)\ =U'(ANg) + b <>\ — A) : (36)
= % / I
O:U()\/\é)JrX:U(A)\?Q)Jr%()\é*l), @37

exploiting relation[(B).

1. Model I Eq.(37) defines for the original Simo & Pister model repntisgy a non-linear equation for com-
puting the lateral stretchy. Using (22) with|(34) and representation (35) yield

In(AN3) = %(1 —3) (38)

FACULTY 3 6



lateral stretch\q

or, equivalently,

with

into Eq.[(36), which reads in concrete form

M = exp((1 - A3)p/A)
for given \. This equation can be reformulated into one equation withwrknown

9(Aq) =0

9(AQ) == MG — exp((1 = AZ)u/A).
For a given)\ the stress calculation requires the iterative solution @{4D) and the subsequent insertion

(39)

(40)

(41)

In(A\2) 1
Q H
Ope = A——m™ + 5 (A= < 42
w= AT (*-3) @2)
1000 - \ — 1000 - ‘ —
incomp. solution incomp. solution
v=0 - v=_0 -
v=20.3 v=03 -
100 v = 0.499 100 v = 0.499
e
=
........ 8
g
10 D 10
...... I
.............................. o)
---------- K] SEVSRSTSTI NP NS SR
1 1
0.1 0.1
1e-050.00010.001 0.01 0.1 1 10 1e-050.00010.001 0.01 0.1 1 10

axial stretch\ axial stretch\

(a) model 1 (b) model 2
1000 - w —
incomp. solution
R
v=0.3
100 b v = 0.499
Q
=
8
Q
D 10
I
i)
K]
1
0.1
1e-050.00010.001 0.01 0.1 1 10

axial stretch\

(c) model 3

Figure 3: Lateral stretch behavior for varying Lame-constaand model concerned
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2. Model 2 From Eq{(9) and by means of strain-energy (23), one obthmsno equations

Oxx =

0=

A 1 I

MW - |+ (NP1 (43)
Q )

2 ( AA%) AN,

A 1 I

M - — |+ 5 (AG - D). (44)
Q Q

2 < AA%) AN,

The second equation is used for calculating the lateraic$toe, by solving

i.e. we arrive at an analytical expression. Singe> 0 holds, only one solution exists.

3. Model 3 For model 3 defined in EQ.(26) Eq.(37) reads

9(A\q) =

A
10

whose solution leads the axial stresses

Oxx =

2 A+2
b= () A @
5 (W) = () ™) + L5 (08 = 1) =0 (46)
Q
A .
T () = (W) ™) + %(A . %). (47)

Accordingly, only for specific strain-energy functions &bl 1 pure analytical solutions are possible.

In the following the chosen models are investigated. Fosstiiesequent investigations use is made of a “shear
modulus”y, = 2 MPa. Exploiting a Poisson-ratio= 0, 0.3, 0.499 yields forA = 2uv/(1—2v) the Lame constant
A =10.0,3.0,998.0 MPa. In Fig| 3 the lateral stretch behavior is compared fettltinee different models (41), (45)
and (46). The Simo & Pister model, model 1, yields a non-cayesmt solution forr = 0.3 between\ = 2 and
A = 3. The reason of it might come from the property thdt/) is non-convex a/ > e = 2.718.... The Simo
& Taylor model, model 2, does not reflect incompressibilityiich commonly is tried to be incorporated with a
large A. In all figures the relation between the lateral stretch dnedaxial stretch for an isochoric deformation
det F = A3 = 1,i.e. Ao = A~'/2, is depicted. The model of [Hartmann and Neff, 2003], modergorces the

constraint most strongly.

However, if the stress-stretch behavior is looked at, sge4ithe differences can only be seen at higher stretch

40
30
20
10

0

sigma

-10

mode‘l 1y = 6.3
model 1,v = 0.499

model 2,v = 0.3
model 2,v = 0.499

model 3,v = 0.3

i
e

model 3 = 0.499 .

[

0.5 1 1.5 2
axial stretchi

25 3

Figure 4: Stress-stretch behavior for varying Lame-patame

magnitudes, and then, only for the differences between tgnitude of the Lame-constafit
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4 Conclusions

The main advantage of the Simo & Pister-type finite strainenglasticity relation is its simplicity represented
by two material parameters which can be interpreted as thelLtame-constants occurring in linear elasticity.
Accordingly, for finite deformations within a theory of mepdasticity this class of models seem to be appropriate.
Particularly, the monotonous behavior in a stress-stréitodram of a uniaxial tension-compression test seemingly
yield a physical reasonable response.

However, the investigation of simple shear shows an esdeinwback. There are no normal stresses in out-of-
plane direction and no stresses to hold the sheared spepeneendicular to the shear direction, which is physical
unreasonable leading to non-existing second-order sffect
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