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The Class of Simo & Pister-type Hyperelasticity Relations
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Germany, stefan.hartmann@tu-clausthal.de

Abstract

A finite strain hyperelasticity relation, which is frequently utilized in the field of Computational Mechanics, has
been proposed by [Simo and Pister, 1984]. The original strain-energy function of this elasticity relation can be
modified so that a general representation is obtained. Accordingly, particular studies of the properties of the orig-
inal and further strain-energy functions are necessary. This includes both the derivation of the stress computation
and the consistent tangent operator within non-linear finite element analysis and simple homogeneous deforma-
tions such as simple tension/compression and simple shear. The latter caseof simple homogeneous deformations
are required as testing examples in the verification step of the more general verification and validation process.
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1 Introduction

Although a huge number of constitutive models in finite strain elasticity have been published so far, even the most
famous are not investigated in detail. Hyperelasticity relations in the finite strain regime are used for modeling the
pure elastic response or they are embedded in models developed in finite strain viscoelasticity, plasticity or vis-
coplasticity (see [Lion, 1996, Reese and Govindjee, 1998, Hartmann, 2002, Lührs et al., 1997] and the literature
cited therein). The necessity of detailed investigations on the analytical level was shown by [Ehlers and Eipper, 1998],
since there exist models showing that even in simple tensiona specimen becomes thicker after a certain amount
of axial stretching (or it gets thinner in compression), [Hartmann and Neff, 2003]. This, however, contradicts our
daily experience. Furthermore, simple analytical and half-analytical examples are necessary for code verification
purposes representing one of the verification steps in the verification and validation concepts (see [Roache, 1998,
Schwer, 2001]). Here, it is thought of verifying finite element implementations, which is one of the most often
applied numerical method in engineering applications.

In view of the verification and validation step the stress computation is treated and the consistent linearization,
which is necessary in a Newton-like iteration scheme in finite elements, is appended. For code verification two
simple deformations, namely simple tension and simple shear, are proposed. Particularly, simple shear turns out to
be investigated in more detail for both the finite element discretization and for the constitutive model applied here.

The investigations are carried out at a frequently applied material model proposed by [Simo and Pister, 1984].
It will turn out that this model shows some physical drawbacks.

2 Model description

In the following, the basic ideas and properties of the Simo &Pister-type hyperelasticity models are summarized,
where further topics are discussed. In this respect, we refer to the original literature, [Simo and Pister, 1984]. This
class of hyperelasticity relations are based on a strain-energy function of the type

ψ(J, IC) = U(J) + w(IC) = U(J) − µ lnJ +
µ

2
(IC − 3), (1)

whereJ = detF defines the determinant of the deformation gradientF = Grad~χR( ~X, t), ~x = ~χR( ~X, t) sym-
bolizes the motion of a material point~X, and IC = tr C is the first invariant of the right Cauchy-Green tensor
C = F

T
F. trA = a k

k denotes the trace operator. In other words,

U(J) = U(J) − µ lnJ, w(IC) =
µ

2
(IC − 3) (2)

U
′

(J) = U ′(J) −
µ

J
, w′(IC) =

µ

2
(3)

U
′′

(J) = U ′′(J) +
µ

J2
, w′′(IC) = 0 (4)

hold, with the propertyU(1) = 0 andw(3) = 0 (strain-energy free undeformed configuration). In the original
paper the strain-energy

U(J) =
Λ

2
(lnJ)2, U ′(J) = Λ

lnJ

J
, U ′′(J) = Λ

1 − lnJ

J2
. (5)

is defined. In the investigations carried out here, we do not specify the strain-energy partU(J) at the moment and
look for those described in the literature. A number of functionsU(J), which have been proposed in connection
with strain-energy functions decomposed into volume-preserving and volume-changing parts, are summarized, see
Tab. 1, see [Hartmann and Neff, 2003]. Usually, these parts of the strain-energy function are applied in the context
of models based on the multiplicative decomposition of the deformation gradient into an isochoric and a volumetric
part. In this respect, the original Simo & Pister model can bemodified by changing the strain-energy partU(J),
even though it fits not into this class of models.

First, the three-dimensional stress calculation and the related consistent linearization are summarized. The
second Piola-Kirchhoff tensorS = JF

−1
σF

−T reads in the case of hyperelasticity, see [Truesdell and Noll, 1965,
Ogden, 1984, Haupt, 2002],

S = 2
dψ

dC
= 2U

′

(J)
dJ

dC
+ 2w′(IC)

dIC
dC

= (6)

= U
′

(J)JC
−1 + µI, (7)
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Table 1: Various strain-energy functionsU(J) (see [Hartmann and Neff, 2003])

U(J)/Λ U ′(J)/Λ U ′′(J)/Λ Reference

1
2 (J − 1)2 J − 1 1

1
4

`

(J − 1)2 + (ln J)2
´ 1

2

“

J − 1 + 1
J

ln J
”

1
2J2 (1 + J2

− ln J) [Simo and Taylor, 1982]

1
2 (ln J)2 1

J
ln J 1

J2 (1 − ln J) [Simo et al., 1985]

1
β2

„

1
Jβ

− 1 + β ln J

«

1
β

„

1
J

−

1
J1+β

«

1
β

„

1
J2+β

(1 + β − Jβ)

«

[Ogden, 1972]

1
4

`

J2
− 1 − 2 ln J

´ 1
2

“

J −

1
J

”

1
2

“

1 + 1
J2

”

[Simo and Taylor, 1991]

J − ln J − 1 1 −

1
J

1
J2 [Miehe, 1994]

Jβ(β ln J − 1) + 1 β2 1
J1−β

ln J β2Jβ−2(1 + (β − 1) ln J) [Hartmann, 2002]

J ln J − J + 1 ln J 1
J

[Liu et al., 1994]

1
32 (J2

− J−2)2 1
8

“

J3
−

1
J5

”

1
8

“

5 1
J6 + 3J2

”

[ANSYS, 2000]

J
β

„

1 −

J−β

1 − β

«

+ 1
β − 1

1
β

`

1 − J−β
´

J−(1+β) [Murnaghan, 1951, S.68]

1
50

`

J5 + J−5
− 2

´ 1
10

`

J4
− J−6

´ 1
10

`

4J3 + 6J−7
´

[Hartmann and Neff, 2003]

whereσ is the Cauchy stress tensor andI defines the identity tensor of second order. Here, the relations

dJ

dC
=

1

2
JC

−1 and
dIC
dC

= I (8)

have been exploited. In order to obtain quantities operating on the current configuration, the push-forward operator
F = [F ⊗ F]

T23 is applied, which leads to the Cauchy stress tensor

σ =
1

J
FS =

1

J
FSF

T = U
′

(J)I +
µ

J
B (9)

with the left Cauchy-Green tensorB = FF
T .

Second, the consistent tangent operator concerned has to beinvestigated. The consistent linearization step is
reckoned by applying the Gateaux-derivative (DA h(A)[H] = d

dλh(A + λH)|λ=0) of the elasticity relation (7)

C̃H = 2DC S(C)[H] = 2
dS
dC

H, (10)

leading to

C̃ =
(

U
′′

(J)J2 + U
′

(J)J
)

C
−1 ⊗ C

−1 − 2U
′

(J)J
[

C
−1 ⊗ C

−1
]T23

. (11)

The particular transpositionT23 of the fourth order tensor is defined by the transposition of the second and third
index,AT23 = aikjl~gi ⊗ ~gj ⊗ ~gk ⊗ ~gl. The push-forward operation of the material tangent onto the spatial tangent
operator leads to

C =
1

J
FC̃FT =

(

U
′′

(J)J + U
′

(J)
)

I ⊗ I − 2U
′

(J)I = (12)

= (U ′′(J)J + U ′(J)) I ⊗ I − 2
(

U ′(J) +
µ

J

)

I, (13)
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where use is made of the properties

[A ⊗ B]
T23

C = ACB
T (14)

[

[A ⊗ B]
T23

]T

=
[

A
T ⊗ B

T
]T23 (15)

[A ⊗ B]
T23 [C ⊗ D] =

[

[A ⊗ B]
T23

C ⊗ D

]

=
[

ACB
T ⊗ D

]

(16)

[C ⊗ D] [A ⊗ B]
T23 =

[

C ⊗
[

A
T ⊗ B

T
]T23

D

]

=
[

C ⊗ A
T
DB

]

(17)

[A ⊗ B]
T23 [C ⊗ D]

T23 = [AC ⊗ BD]
T23 . (18)

A, B, C, andD are second order tensors.
In the small strain case,F → I, the tangent operator reads

CL = ΛI ⊗ I + 2µI = CF=I =
(

U
′′

(1) + U
′

(1)
)

I ⊗ I − 2U
′

(1)I (19)

(I = [I ⊗ I]
T23 denotes the fourth order identity tensor), i.e. the Lame constantsΛ andµ of small strain linear

elasticity have the form

Λ = U
′′

(1) + U
′

(1) = U ′′(1) + U ′(1) (20)

µ = −U
′

(1) = −U ′(1) + µ (21)

which restricts the form of the strain-energy functionU(J), see Eq.(3), becauseU ′(1) = 0 has to hold due to
Eq.(21). Thus, Eq.(20) readsΛ = U ′′(1). At first sight, any functionU(J) with the propertyΛ = U ′′(1),
U(1) = 0, andU ′(1) = 0 could be chosen. However, not all of these models might yieldphysically ideal slopes
so that it must be recommended to investigate each new proposal very carefully.

3 Simple homogeneous deformations

In the following, a number of models are investigated in viewof simple shear and uniaxial tension-compression
behavior. The advantage of these examples is that they mightyield analytical or half-analytical expressions which
are useful for both the study of the principal physical modelbehavior and for verifying, for example, a finite
element implementation of the model. Here, three models areinvestigated, namely the

1. original model of [Simo and Pister, 1984]

U(J) =
Λ

2
(ln J)2, U ′(J) = Λ

lnJ

J
, U ′′(J) = Λ

1 − lnJ

J2
, (22)

calledModel 1,

2. the model of [Simo and Taylor, 1991] calledModel 2, which is defined by the ansatz

U(J) =
Λ

2

(

J2

2
− lnJ −

1

2

)

, (23)

U ′(J) =
Λ

2

(

J −
1

J

)

, (24)

U ′′(J) =
Λ

2

(

1 +
1

J2

)

, (25)

see fifth row of Tab. 1, and

3. the model of [Hartmann and Neff, 2003] reading

U(J) =
Λ

50

(

J5 + J−5 − 2
)

, (26)

U ′(J) =
Λ

10

(

J4 − J−6
)

, (27)

U ′′(J) =
Λ

10

(

4J3 + 6J−7
)

(28)

see last row of Tab. 1, which is defined asModel 3.

FACULTY 3 4



3.1 Simple shear

The case of simple shear defines a homogeneous deformation ofthe formx = X +κY , y = Y , andz = Z leading
to the deformation gradient

F =





1 κ
1

1



~ei ⊗~ej , J = detF = 1, (29)

and, accordingly, the left Cauchy-Green tensor takes the form

B =





1 + κ2 κ
κ 1

1



~ei ⊗~ej . (30)

Fig. 1 shows the geometry and the stress boundary conditionsconcerned. The components of the Cauchy stress

1

1

1

x

yy

z

κ

(a) Geometry

σyy

σyy

σyy

σyy

σxy

σxy

N

T

T

N
σzzσzz

(b) Stress boundary conditions

Figure 1: Simple shear

tensor (9) read

σxy = µκ, (31)

σxx = U
′

(1) + µ(1 + κ2) = µκ2, (32)

σyy = σzz = U
′

(1) + µ = 0 (33)

for the given geometrical quantities (29) and (30). Surprisingly, the stressesσyy and σzz are zero, which is
independent of the magnitude of the shear parameterκ, see Eq.(3) forJ = 1. In other words, independently of
the magnitude of the shear parameterκ there are neither normal stresses iny-direction nor normal stresses inz-
direction, which might be of sense in the case of a small strain theory. However, in the case of finite deformations
it is more than questionable that, although a “plane strain problem” is treated, no stressesσyy andσzz occur to
guarantee the geometrical constraints in thickness and vertical direction. This holds for all Simo & Pister-type
models.

The simple shear problem is useful, for example, for verifying a finite element code both for a new elements
of a new constitutive model. In the simple shear case the computations might be conducted using plane strain
conditions of Fig. 2(a) using plane elements or three-dimensional hexahedrals, or using the boundary conditions
depicted in Fig. 2(b) for three-dimensional elements. In the latter case of Fig. 2 the strain-energy functionU(J),
or more precisely the parameterΛ, controls the closeness to the analytical solution, i.e. for Λ ≫ µ, the isochoric
property of simple shear,detF = 1, is approximated.

3.2 Tension-compression behavior

In [Ehlers and Eipper, 1998] and later on in [Hartmann and Neff, 2003] strain-energy functions, which are related
to the multiplicative decomposition of the deformation gradient into a volume changing and an isochoric part, are
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1

1 t t

x,X

y, Y κ

(a) (b)

Figure 2: Four eight-noded volumetric elements and their boundary conditions in the case of simple shear

investigated. Most of them make use of the functionsU(J) shown in Tab. 1. Only for the model proposed by
[Hartmann and Neff, 2003] a non-physical behavior was not observed. All other proposals in Tab. 1 may yield in
tension an increasing of the thickness (or in compression a decrease of the thickness). Accordingly, every strain-
energy function should be investigated in view of its physical properties or its range of applicability, particularly,
for tension and compression. Since the Simo & Pister-type models are not based on the decomposition into
volume changing and volume preserving deformations but having one part,U(J), which depends only on the
volume-changing deformation, studies are of interest.

Normally, the assumption of a uniaxial tension/compression deformation yields one non-linear equation in the
case of compressible hyperelasticity, which has to be solved numerically. In the case of Cartesian coordinates, the
deformationx = λX, y = λQY , andz = λQZ is assumed leading to the deformation gradient

F =





λ
λQ

λQ



~ei ⊗~ej , J = detF = λλ2

Q (34)

and the left Cauchy-Green tensor

B =





λ2

λ2

Q

λ2

Q



~ei ⊗~ej . (35)

λ symbolizes the prescribed axial stretch (current length over initial length,λ = L/L0) andλQ represents the
unknown lateral stretch. In respect of Eq.(9), the stress state and the lateral stretch can be obtained by the two
equations

σxx = U
′

(λλ2

Q) +
µ

λ2

Q

λ = U ′(λλ2

Q) +
µ

λ2

Q

(

λ −
1

λ

)

, (36)

0 = U
′

(λλ2

Q) +
µ

λ
= U ′(λλ2

Q) +
µ

λλ2

Q

(

λ2

Q − 1
)

, (37)

exploiting relation (3).

1. Model 1: Eq.(37) defines for the original Simo & Pister model representing a non-linear equation for com-
puting the lateral stretchλQ. Using (22) with (34)2 and representation (35) yield

ln(λλ2

Q) =
µ

Λ
(1 − λ2

Q) (38)
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or, equivalently,
λλ2

Q = exp((1 − λ2

Q)µ/Λ) (39)

for givenλ. This equation can be reformulated into one equation with one unknown

g(λQ) = 0 (40)

with
g(λQ) := λλ2

Q − exp((1 − λ2

Q)µ/Λ). (41)

For a givenλ the stress calculation requires the iterative solution of Eq.(40) and the subsequent insertion
into Eq.(36), which reads in concrete form

σxx = Λ
ln(λλ2

Q)

λλ2

Q

+
µ

λ2

Q

(

λ −
1

λ

)

(42)

 0.1

 1

 10

 100

 1000

 1e-05 0.0001 0.001  0.01  0.1  1  10

axial stretchλ
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Q
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(a) model 1

 0.1
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(b) model 2
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λ
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(c) model 3

Figure 3: Lateral stretch behavior for varying Lame-constant Λ and model concerned

7 Technical Report



2. Model 2: From Eq.(9) and by means of strain-energy (23), one obtainsthe two equations

σxx =
Λ

2

(

λλ2

Q −
1

λλ2

Q

)

+
µ

λλ2

Q

(λ2 − 1), (43)

0 =
Λ

2

(

λλ2

Q −
1

λλ2

Q

)

+
µ

λλ2

Q

(λ2

Q − 1). (44)

The second equation is used for calculating the lateral stretchλQ by solving

λ2

Q =
µ

Λλ2
±

√

( µ

Λλ2

)2

+
Λ + 2µ

Λλ2
, (45)

i.e. we arrive at an analytical expression. SinceλQ > 0 holds, only one solution exists.

3. Model 3: For model 3 defined in Eq.(26) Eq.(37) reads

g(λQ) =
Λ

10

(

(λλ2

Q)4 − (λλ2

Q)−6
)

+
µ

λλ2

Q

(λ2

Q − 1) = 0 (46)

whose solution leads the axial stresses

σxx =
Λ

10

(

(λλ2

Q)4 − (λλ2

Q)−6
)

+
µ

λ2

Q

(λ −
1

λ
). (47)

Accordingly, only for specific strain-energy functions of Tab. 1 pure analytical solutions are possible.
In the following the chosen models are investigated. For thesubsequent investigations use is made of a “shear

modulus”µ = 2 MPa. Exploiting a Poisson-ratioν = 0, 0.3, 0.499 yields forΛ = 2µν/(1−2ν) the Lame constant
Λ = 0.0, 3.0, 998.0 MPa. In Fig. 3 the lateral stretch behavior is compared for the three different models (41), (45)
and (46). The Simo & Pister model, model 1, yields a non-convergent solution forν = 0.3 betweenλ = 2 and
λ = 3. The reason of it might come from the property thatU(J) is non-convex atJ > e = 2.718 . . .. The Simo
& Taylor model, model 2, does not reflect incompressibility,which commonly is tried to be incorporated with a
largeΛ. In all figures the relation between the lateral stretch and the axial stretch for an isochoric deformation
detF = λλ2

Q = 1, i.e.λQ = λ−1/2, is depicted. The model of [Hartmann and Neff, 2003], model 3, enforces the
constraint most strongly.

However, if the stress-stretch behavior is looked at, see Fig. 4, the differences can only be seen at higher stretch

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0  0.5  1  1.5  2  2.5  3

si
gm

a

axial stretchλ

model 1,ν = 0.3
model 1,ν = 0.499

model 2,ν = 0.3
model 2,ν = 0.499

model 3,ν = 0.3
model 3,ν = 0.499

Figure 4: Stress-stretch behavior for varying Lame-parameterΛ.

magnitudes, and then, only for the differences between the magnitude of the Lame-constantΛ.
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4 Conclusions

The main advantage of the Simo & Pister-type finite strain hyperelasticity relation is its simplicity represented
by two material parameters which can be interpreted as the two Lame-constants occurring in linear elasticity.
Accordingly, for finite deformations within a theory of metal plasticity this class of models seem to be appropriate.
Particularly, the monotonous behavior in a stress-stretchdiagram of a uniaxial tension-compression test seemingly
yield a physical reasonable response.

However, the investigation of simple shear shows an essential drawback. There are no normal stresses in out-of-
plane direction and no stresses to hold the sheared specimenperpendicular to the shear direction, which is physical
unreasonable leading to non-existing second-order effects.
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